Anesthetic Considerations in Acute Traumatic Head Injury

Essay

Submitted for the Partial Fulfillment of Master Degree in **Anesthesia**

Submitted By

Mohamed Ahmed Ahmed Abo Shady

M.B.,B.Ch Menoufiya University

Supervised By

Prof. Dr. Bahaa El Din Ewiss Hassan

Professor of Anesthesia and Intensive Care Faculty of Medicine-Ain Shams University

Prof. Dr. Ahmed Nagah El Shaer

Professor of Anesthesia and Intensive Care Faculty of Medicine-Ain Shams University

Dr. Amr Sobhy Abd El Kawy

Lecturer of Anesthesia and Intensive Care Faculty of Medicine-Ain Shams University

Faculty of Medicine
Ain Shams University
2014

الإعتبارات التخديرية في حالات الإصابات الحادة للرأس

رسالة

توطئة للحصول على درجة الماجستير في التخدير مقدمة من

الطبيب/ محمد أحمد أحمد أبوشادي بكالوريوس الطب والجراحة _ جامعة المنوفية

تحت إشراف

أ.د/ بهاء الدين عويس حسن

أسناذ النخدير والرعاية المركزة كلية الطب- جامعة عين شمس

أ.د/ أحمد نجاح الشاعر

أسناذ النخدير والرعاية المركزة كلية الطب- جامعة عين شمس

د/ عمرو صبحي عبد القوي

مدرس النخدير والرعاية المركزة كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٤

Acknowledgement

First of all thanks to Allah who helped me to do this work.

I would like to express my sincere appreciation and gratitude to Prof. Dr. Bahaa El Din Ewiss Hassan, Professor of Anesthesia, Faculty of medicine, Ain Shams University for his generous supervision and kind guidance to make the realization of this work much easy.

I am deeply grateful to Prof. Dr. Ahmed Nagah El Shaer, Professor of Anesthesia, Faculty of Medicine, Ain Shams University, for his guidance and supervision.

Deepest gratitude to Dr. Amr Sobhy Abd El Kawy Lecturer of Anesthesia, Faculty of medicine, Ain Shams University for his eager share, his kind support and guidance.

Thanks to my parents and my wife for their sincere encouragement.

Contents

		Page
List of abbreviations		Ĭ
List of figures		III
List of tables		IV
1- Introduction		1
2- Anatomy & Physio	logy of cerebral circulation	4
3- Effect of anesthetic	drugs on cerebral circulation	33
4- Pathophysiology of	traumatic brain injury	46
5- Epidemiology of tr	aumatic brain injury	. 58
6- Preoperative mana	gement of traumatic brain inju	ry 68
7- Operative manager	ment of traumatic brain injury	85
8- Summary		. 105
9-References	· · · · · · · · · · · · · · · · · · ·	107
10-Arabic summary		

List of Abbreviations

ABP	Arterial blood pressure
ACA	Anterior cerebral artery
AIS	Abbreviated Injury Scale
ATP	Adenosine triphosphate
BBB	Blood brain barrier
CBF	Cerebral blood flow
CBV	Cerebral blood volume
CMR	Cerebral metabolic rate
CMRO2	Cerebral metabolic rate of oxygen
CO2	Carbon dioxide
CPP	Cerebral perfusion pressure
CSF	Cerebrospinal fluid
CSI	Cervical spine injury
CT	Computed tomography
CVP	Central venous pressure
D5W	5% dextrose
DAI	Diffuse axonal injury
DBP	Diastolic blood pressure
DNA	Deoxyribonucleic acid
ECG	Electrocardiography
ED	Emergency Department
EDH	Epidural hematoma
EEG	Electroencephalogram
GCS	Glasgow coma scale
HCT	Hematocrit
ICA	Internal carotid artery
ICAM	Intercellular adhesion molecules
ICP	Intracranial pressure
ICU	Intensive care unite
IJV	Internal jugular vein

ISP	Intracerebral steal phenomenon
ISS	Injury Severity Score
LMA	Laryngeal mask airway
MAC	Minimum alveolar concentration
MAP	Mean arterial pressure
mmHg	Millemetre mercury
MRI	Magnetic resonance imaging
MCA	Middle cerebral artery
MV	Mechanical Ventilation
N2O	Nitrous Oxide
NCCU	Neurocritical care unit
NMDA	N-Methyl-D-Aspartate
PaCO ₂	Arterial carbon dioxide tension
PaO ₂	Arterial oxygen tension
PCA	Posterior cerebral artery
PEEP	Positive end expiratory pressure
PtiO ₂	Brain tissue oxygen tension
rCBF	Regional cerebral blood flow
SAH	Subarachnoid haemorrhage
SaO2	Arterial oxygen saturation
SBP	Systolic blood pressure
SCI	Spinal cord injury
SjvO ₂	Jugular venous oxygen saturation
SpO2	Oxygen saturation
TCD	Transcranial Doppler
TBI	Traumatic brain injury
U.S.	United States
UK	United Kingdom
VCAM	Vascular adhesion molecules

List of Figures

Figure	Subjects	Page
1	The blood supply to the brain	
2	Cerebral venous drainage	7
3	Cerebral autoregulation	13
4	Composition of blood-CSF barrier	17
5	CSF circulation	18
6	The volume–pressure curve	21
7	Types of intracranial pressure wave	25
8	The jugular bulb	32
9	Pathophysiology of ischemia	56
10	Estimated average annual number of traumatic Brain Injury in United States, 2002-2006	58
11	Heterogeneity of severe traumatic brain injury (TBI). Computed tomography (CT) scans of five different patients with severe TBI	66
12	Addenbrooke's neurocritical care unit: ICP/CPP management algorithm	81
13	Selection of anesthetic protocol for use in head trauma patients	89

List of Tables

Table	Subjects	Page
1	Composition and normal values of CSF	19
2	Normal intracranial pressure values	22
3	Effects of narcotics on CSF formation, resistance to reabsorption of CSF and predicted effect on IcP.	38
4	Effects of anesthetic agents on cerebral blood flow andcerebral metabolic rate for oxygen consumption and intracranial pressure	43
5	Estimated Average Annual Numbers of Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths by Age Group, United States, 2002-2006.	59
6	Glasgow Coma Scale for adults	63
7	Modified Marshall CT grades	67
8	Recommendations from the 2007 guidelines for management of severe traumatic brain injury	84

Introduction

Traumatic brain injury (TBI) is the leading cause of death among adults younger than 45 years and in children (1–15 years). The majority of TBI is classified as mild, and around 8–10% is classified as moderate or severe (Yates *et al.*, 2006).

TBI has been divided into two distinct periods: primary and secondary brain injury. The primary injury is the result of the initial, mechanical forces, resulting in shearing and compression of neuronal, glial, and vascular tissue. Axonal tissue is more susceptible to the injury than vascular tissue. Thus, focal injuries are usually superimposed upon more diffuse neuronal injury. The consequences of the initial injury include physical disruption of cell membranes and infrastructure, and disturbance of ionic homeostasis secondary to increased membrane permeability (Stiefel *et al.*, 2005).

The modern management of severe TBI has fallen into the domain of a multidisciplinary team led by neurointensivists, neuroanaesthetists, and neurosurgeons and is based on the avoidance of secondary injury, maintenance of cerebral perfusion pressure (CPP), and optimization of cerebral oxygenation (Czosnyka *et al.*, 2005).

Anesthetic agents have widely variable effects on the blood supply to the brain and, therefore, choice of anesthetic agent can influence neurological outcome. Although in the past, anesthetic agents have been selected for their neuroprotective properties, it is increasingly being recognized that the support of cerebral perfusion during anesthesia contributes more significantly to a positive outcome for these patients. Support of cardiorespiratory function is, therefore, highly important when anesthetizing patients with TBI (Elizabeth et al., 2007).

Aim of the Work

This review is focused on the perioperative anaesthetic management of acute head injury, with particular emphasis on recent developments.

Anatomy of Cerebral Circulation

Cerebral circulation refers to the movement of blood through blood supplying the network of vessels the brain. arteries deliver oxygenated blood, glucose and other nutrients to the brain and the veins carry deoxygenated blood back to the heart, removing carbon dioxide, lactic acid, and other metabolic products. Since the brain is very vulnerable to compromises in its blood supply, the cerebral circulatory system has many safeguards. Failure of these safeguards results in cerebrovascular accidents, commonly known as strokes. The amount of blood that the cerebral circulation carries is known as cerebral blood flow. The presence of gravitational fields or accelerations also determine variations in the movement and distribution of blood in the brain, such as when suspended upside- down (Bond et al., 2003).

Arterial cerebral circulation

The arterial cerebral circulation is normally divided into anterior cerebral circulation and posterior cerebral circulation. There are two main pairs of arteries that supply the cerebral arteries and the cerebrum: Internal carotid areries and vertebral arteries. The anterior and posterior cerebral circulations are interconnected via bilateral posterior communicating arteries. They are part of the Circle of Willis, which provides backup circulation to the brain. In

case one of the supply arteries is occluded, the Circle of Willis provides interconnections between the anterior and the posterior cerebral circulation along the floor of the cerebral vault, providing blood to tissues that would otherwise become ischemic (Scanlon, 2011).

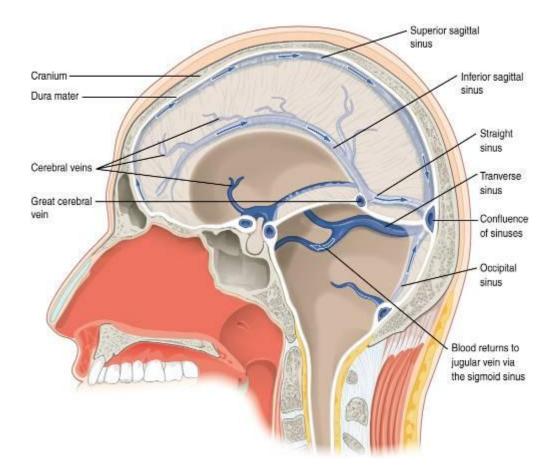


Figure (1): The blood supply to the brain enters through the internal carotid arteries and the vertebral arteries, eventually giving rise to the circle of Willis (**Scanlon, 2011**).

Cerebral venous drainage

The venous drainage of the cerebrum can be separated into two subdivisions: superficial and deep. The superficial system is composed of dural venous sinuses, which have wall composed of dura mater as opposed to a traditional vein. The dural sinuses are, therefore located on the surface of the cerebrum. The most prominent of these sinuses is the superior sagittal sinus which flows in the sagittal plane under the midline of the cerebral vault, posteriorly and inferiorly forming the confluence of sinuses. From here, two transverse sinuses bifurcate and travel laterally and inferiorly in an S-shaped curve that forms the sigmoid sinuses which go on to form the two jugular veins. In the neck, the jugular veins parallel the upward course of the carotid arteries and drain blood into the superior vena cava (Affifi and Bergman, 2005).

The deep venous drainage is primarily composed of traditional veins inside the deep structures of the brain, which join behind the midbrain to form the vein of Galen. This vein merges with the inferior sagittal sinus to form the straight sinus which then joins the superficial venous system mentioned above at the confluence of sinuses (**Affifi and Bergman, 2005**).

Figure (2): Blood drains from the brain through a series of sinuses that connect to the jugular veins (**Scanlon, 2011**).