Therapeutic Drills for Apraxia of Speech

An essay submitted for the fulfillment Of the master degree of Phoniatrics

Presented by

Eman Samir Fouad Elsayed

M.B., B.Ch Resident of phoniatrics Suez main hospital

Supervised by

Prof. Dr. Aleia Mahmoud El-Shoubary

Professor of Phoniatrics Faculty of Medicine - Ain Shams University

Dr. / Sally Taher Kheir El-Eldin

Lecturer of Phoniatrics
Faculty of Medicine - Ain Sham University

Ain Sham University 2013

Acknowledgement

First of all I feel always indebted to *Allah*, the merciful and compassionate.

I would like to express my sincere gratitude and respect to Professor *Dr. Alia Mahmoud El-Shoubary* Professor of Phoniatrics Faculty of Medicine- Ain Shams University, for giving me the honor of working under her supervision and continuous guidance, moral support and patience in correcting my mistakes throughout the whole work.

I would like to thank deeply *Dr. Sally Taher Kheir El-Eldin* Lecturer of Phoniatrics Faculty of Medicine Ain Sham University, who saved no effort in guiding me where no words can be sufficient to express my thanks and gratitude.

Words stand short when coming to express my gratitude to my family who tolerated a lot to help me reach this point in my life; my beloved husband *Mohamed*, my mother and my little kids.

I would like to express my deepest thanks and respect to all staff members and colleagues in phoniatrics unit faculty of Medicine Ain Shams University for their consistent support and help.

I would like to give special thanks to my dear friend *Hasnaa*.

Finally I would like to dedicate all my effort and my success " In Shaa' **Allah**" to the soul of my beloved father, I wished if he were beside me, and I hope he is proud of me.

Eman Samir

Contents

	Page
Introduction	1
Aim of the work	7
Apraxia of speech	8
Over view of apraxia	7
 Types of apraxia 	8
 Definition of Apraxia Of Speech 	14
 Neuroanatomy and pathophysiological aspect of 	17
apraxia	
 The nature of apraxia of speech 	18
 Types of AOS 	21
 Associated errors with CAS 	30
 Prevalence of apraxia of speech 	34
 Clinical Picture of Apraxia of Speech 	36 39
 Differential Diagnosis 	39
Assessment of apraxia of speech	43
 Elementary diagnostic procedures 	43
 Diagnostic criteria of AOS 	47
 Clinical diagnostic aids 	51
 Additional diagnostic measures 	72
 Assessing Severity of Involvement 	82
Rehabilitation of apraxia of speech	88
 Motor Learning 	88
Articulatory Kinematic Treatments	104
Integral Stimulation	107
• PROMPT	128
 Sound Production Treatment 	160
 Moto-kinesthetic speech training 	164
Rate and /or rhythm treatments	
· ·	168

Metronomic pacing treatments	169
Melodic intonation therapy	172
Melodic apraxia training	179
Augmentative and Alternative Communication	180
Types of AAC	183
Intersystemic facilitation/reorganization	193
treatments	
Other treatments	199
Summary	203
References	209
Appendix	٣

List of abbreviations

AAC	Augmentative and Alternative Communication	
AAS	Augmentative and Alternative Communication	
	Acquired apraxia of speech	
ABA-2	Apraxia Battery for adults second edition	
ALS	Amylotropic lateral sclerosis	
AOS	Apraxia of Speech	
ASHA	American Speech-Language Hearing	
	association	
ASL	American Sign Language	
CAS	Childhood apraxia of speech	
CHF	Case History Form	
CHI	Case History Interview	
CNS	Central nervous system	
CSS	Conversational Speech Sample	
CWT	Challenging Words Task	
DAS	Developmental apraxia of speech	
DDK	Diadochokinesis Task	
DTTC	Dynamic Temporal and Tactile Cueing	
DVD	Developmental verbal dyspraxia	
EC	Examiner Checklist	
EMA	Electromagnetic articulography	
EMG	Electromyogram	
EPG	Electropalatography	
EST	Emphatic Stress Task	
FOXP2	Forkhead-box P2	
GFTA-2	Goldman-Fristoe Test of Articulation-2 (2 nd ed.)	
GMP	Generalized motor programs	
KBIT-2	Kaufman Brief Intelligience Test (2nd ed.)	
KP	Knowledge of performance	
KR	Knowledge of results (knowledge of results	
LST	Lexical Stress Task	
MAT	Melodic apraxia training	
MCC	Manual Control Console	
MIT	Melodic intonation therapy	
L	1 7	

MSAP	Madison Speech Assessment Protocol	
MSDs	-	
	Motor speech disorders	
MSE	Motor Speech Evaluation	
MWT1	Multiyllabic Words Task 1	
MWT2	Multisyllabic Words Task 2	
NRT	Nonword Repetition Task2	
OA	oral apraxia	
OWLS	Oral and Written Language Scales2	
PAOS	Progressive apraxia of speech	
PCC	Percentage of Consonants Correct	
PMA	Premotor area	
PROMPT	Prompts for restructuring oral muscular	
	phonetic target	
RST	Rhotics and Sibilants Task	
SCT	Sustained Consonant Task	
SCT	Orofacial Examination Task	
SGD	Speech generating device	
SMA	Supplementary motor area	
SOPs	Significant other persons	
SPT	Speech Phrases Task 2	
SPT	Sound Production Treatment	
SRT	Syllable Repetition Task	
STCDA	Screening test for Developmental Apraxia in	
	Arabic speaking children:	
STDAS	Screening test for developmental apraxia of	
	speech	
SVT	Sustained Vowel Task	
TBI	Traumatic brain injury	
VDOE	Virgenia Department of Education	
VT1	Vowel Task 1	
VT2	Vowel Task 2	
VT3	Vowel Task 3	
WJ-III	Woodcock-Johnson III Tests of Achievement 2	

List of Figures		
Figure		Page
Figure	some of brain areas involved in speech	20
1a &1b	control	
Figure 2	The MSAP hierarchy	61
Figure 3	Dynamic on line varying of the temporal relationship between the clinician's model and the child's	115
	response (adding and fading cues) during the integral stimulation treatment	
Figure 4	The 2 specific intervals of time involved when extrinsic feedback is provided:	119
Figure 5	motor speech hierarchy	122
Figure 6	Integration of newly learned speech	123
	actions with previously established	
	action routines) and previously taught	
	contextual units of language to achieve	
	voluntary motor control over novel,	
	self-generated units of speech.	
Figure 7	Place of contact for target position	135
Figure 8	Jaw position for vowel production	137
Figure 9	Facial prompts.	140
Figure 10a	PROMPT for /n/	143
Figure 10b	PROMPT for /m/	143
Figure 11a	PROMPT for / æ/	147
Figure 11b	PROMPT for /i/	147
Figure 12	Metronome.	162
Figure 13	Pacing board	162
Figure 14	MIT phrase construction	165

	T	1
Figure	An example of sign languages; Arabic	175
15	sign language.	
Figure	Communication board.	176
16a		
Figure	Communication book	177
16b		
Figure	E-TRAN frames	177
16c		
Figure	Communication wallet.	178
16d		
Figure	A speech generating device (SGD)	179
17		
Figure	Examples of Amer-Ind gestural code	188
18		
Figure	Vibrotactile stimulation device	189
19		

List of tables		
Table		Page
Table 1	Tasks for assessing nonverbal oral	52
	movement control and sequencing	
Table 2	The 25 tests and tasks in the MSAP	56
Table 3	Articulation severity rating scale	78
Table 4	Articulation rating scale overall	80
	functional levels	
Table 5	Practice conditions	92
Table 6	Feedback conditions	96
Table7	Techniques for treating AOS	107
Table	sequence for distributing practice	113
8	trials over all stimuli in one session:	
Table	Hierarchy suggested by Rosenbek	114
9		
Table	consonant prompts	144
10		
Table	vowel prompts	148
11		
Table	Ideal candidates for MIT	164
12		
Table	MIT: elementary level	165
13		
Table	MIT: intermediate level	166
14		
Table	MIT: advanced level	167
15		
Table	Aided vs. unaided AAC systems	179
16		

Introduction

Speech is the final expression of concepts & emotions translated through linguistic pathways that involve lexical, syntactic, phonological & phonetic stages (*Levelt*, 1989), as well as prosody. Speech production is a complex motor act, involving rapid sequential motor movements that often extend over many seconds before a pause. It depends on integration of monitoring and guiding rapid modification of motor command to the larynx, pharynx, & articulators. This allows the maintenance of intelligible speech, even under adverse speaking conditions. It depends on motor (frontal), auditory (temporal), somatosensory (parietal) cortex, as well as insula, cerebellum & subcortical nuclei (*Guenther et al.*, 2006; Ventura et al., 2009; Golfinopoulos et al., 2010).

Historically, the theoretical understanding of motor control including the motor control of speech was dominated by generalized motor programs (GMP), or the idea that movement is guided by a mental representation of some kind (*Kent et al. 1996*).

Recently, research into other areas of motor control has benefited from a vigorous interplay between people who study& engineers who develop mathematical approaches to the abstract problem of control. One of the key results of these collaborations has been the application of state feedback control (SFC) theory to modeling role of higher central nervous system in motor control (*Arbib*, 1981; Todorov and Jordan, 2002; Todorov, 2004; Guigon et al., 2008; Shandmehr and Krakauer, 2008).

Speech motor control

It is not controversial that CNS plays a role in speech motor output: cortex appears to be a main source of motor commands in speaking. In humans, the speech relevant areas of motor cortex make direct connection with neurons of the lips, tongue, and other speech articulators (*Jurgens et al.*, 1982; *Jurgens*, 2002; *Ludlow*, 2004).

The organized motor patterns are built into a hierarchy of six levels within the nervous system; (1) the lower motor neuron, (2) vestibular –reticular level, (3) the extarpyramidal level, (4) the upper motor neuron, (5) the cerebellum, and (6) the conceptual-programming level.

The upper levels act by activation, inhibition and modulation of the lower levels. The lower levels act reflexly with synergism between extension and flexion (*Darley et al.*, 1975).

(1) The lowest level is that of the **lower motor neuron**. It includes the alpha (direct) system which is responsible for

rapid skillful movement and the gamma (indirect) system which is responsible for maintenance of muscle tone and body posture.

- (2) The next level is the **vestibular** –**reticular** level, the role of the vestibular –reticular level is to regulate the activity of the lower motor neuron.
- (3) The third level is **the extarpyramidal** level that is chiefly involved in the subconscious, automatic performance, regulation of muscle tone and inhibition of involuntary movement.
- (4) The fourth and highest purely motor level is **the upper motor neuron** level anatomically represented by the motor cortex and responsible for skilled, discrete and spatially oriented movement.
- (5) The fifth component is **the cerebellum**, which is responsible for detection and correction of errors that occur during the course of movement.
- (6)The highest level of motor organization is **the conceptual-programming** level; this level is dependent upon the integration of a variety of cortical arrangements (*Darley et al.*, 1975).

Stages of conceptual-programming of motor organization for speech:

(1) The first stage is *conceptualization*, involving a desire to do something and establishing a plan of action to carry out the desire (e.g. thinking of calling a friend on the phone).

In this stage, cortical activity is probably bilateral and widespread, and if interfered with can result, for example, in cognitive thought disorder called dementia.

(2) The second stage is *spatial-temporal* (linguistic planning), involving language (e.g. planning what one will say on the phone).

In this stage, cortical activity for linguistic processes is located in the left hemisphere for the great majority of people, if interfered with can result in aphasia.

(3)The third stage is *motor planning* (programming), which is the bridge between the language formulation and motor execution of the neuromuscular system. This stage is responsible for connecting the inner language processes into the endless number of speech utterance. Because of the complexity and the almost instantaneous speed and timing of these movements needed for speech, it is postulated that these movements have been stored in the brain (programmed) ready to do activities immediately.

In this stage brain activity for motor planning is located for the great majority of people in the left hemisphere, involving Anterior language area (44) and its connections to (a) the language portion of the temporal and parietal lobes; areas (22, 39, 41& 42), (b) primary motor area (4) (frontal lobe), (c) supplementary motor area (6) (frontal lobe), (d) somatosensory areas (1,2& 3) (parietal lobe), (e) supramarginal gyrus (parietal lobe), and (f) insula. If this stage is interfered with, the result can be *apraxia of speech*.

- (4)The forth stage is *performance*, which is the executive portion of the neuromuscular system involved in speaking (e.g. talking on the phone). The brain activity is bilateral involving (a) activation pathways, (b) the control circuits, (c) the final common pathways, (d) and the continuous commands from the motor speech programmer.
- (5)The fifth stage is *feedback*, which provides sensory information about ongoing and completed speech movements. The modification of presently occurring and future speech movements is based upon the sensory information.

The brain activity may occur at the spinal and brainstem level, in the cerebellum, thalamus, basal ganglia, and cortex. If this stage is interfered with, the result can be dysarthria. (*Haplem and Goldfarb*, 2012).

Each disorder has its specific therapy program of rehabilitation.

Regarding apraxia, there are different therapy programs; however there is no available program for Arabic speaking patients constructed in a systematic way.