Endoscopic Management of Intraventricular Extension of Intracerebral Hemorrhage

Thesis

Submitted for partial fulfillment of the MD degree In neurosurgery

By

Islam Mohamed Abd-El hady Master in general surgery

Supervised by

Dr. Mostafa M. Kotb

Professor Of neurosurgery, Faculty of Medicine, Cairo University.

Dr. Helmy Abd El Haleem

Professor Of neurosurgery, Faculty of Medicine, Cairo University.

Dr. Basim .M. Ayoub

Professor of neurosurgery, Faculty of Medicine, Cairo University.

Faculty of Medicine Cairo University 2013

Acknowledgements

First and foremost I am thankful to **ALLAH** the beneficent and the merciful.

I wish to express my deepest thanks and gratitude to **Prof. Dr. Mostafa M. Kotb**, Professor of neurosurgery, Faculty of Medicine, Kasr Al Ainy University for his valuable help and sincere guidance. I am very grateful for his great help, advice and encouragement.

I am also extremely indebted to **Prof**. **Dr.** Helmy Abd El Haleem, Professor of neurosurgery, Faculty of Medicine, Kasr Al Ainy University, who gave much of his time and spared no effort in guiding me throughout this work. Thanks for constant support, supervision and encouragement.

I would like to express my deepest thanks and gratitude to **Prof. Dr. Basim.M. Ayoub** Professor of neurosurgery, Faculty of Medicine, Kasr Al Ainy University, for his sincerest support, motivation and encouragement throughout this work.

Also I am grateful to my staff in El-Sahel teaching hospital, Prof. Dr. Abd El Hafeez Shehab El deen and Prof. Dr. Mahmoud Samy.

<u>Abstract</u>

Key Words: endoscope, external ventricular draiage, intraventricular, haemorrhage, intracerebral haemorrhage

We use endoscope the in cases of intraventricular haemorrage extended from intracerebral haemorrage as regard safety, efficiency, and efficacy in comparison to usage of external ventricular drainage as a treatment for intraventricular haemorrageand we found that endosope was superior than external ventricular drainage in our study.

Contents

Introductions and aim of the study	1 -IV
---	-------

1. Review of literatures

8. Arabic Summary

Anatomy 1-16 ***** Epidemiology and risk factors 17-19 ***** Pathogenesis 20-27 **Clinical picture** 28-29 **&** CT Brain 30-35 * MRI Brain 36-40 2. Evaluation &treatment 41-70 71 - 82 3. Patient and method 4. Results 83-97 5. Discussion 98-106 **6. Summary 107** 7. References 108-120

121-122

	List of figures	
NO	Figure	Page
1	Diagram showing ventricular system	1
2	Anatomy of the lateral ventricles.	3
3	Relationship of the corpus callosum, caudate nucleus, and fornix and hippocampal formation to the lateral ventricles.	5
4	Surgical approaches to the lateral ventricles	6
5	Endoscopic approach to lateral &3rd ventricles	8
6	Anatomy of 4th ventricle.	10
7	Histological cut section in choroid plexus	12
8	Absorption of CSF through arachnoid villi	13
9	Surgical Specimens from the Matrix of a Hematoma Associated with Amyloid Angiopathy	19
10	Most Common Sites and Sources of Intracerebral Hemorrhage	22
11	Progression of Hematoma	23
12	Right frontal ventricle. (A) Admission, (B) after ventriculostomy, (C) 1 day after intraventricular administration	30
13	Third ventricle. (A) Admission, (B) after ventriculostomy, (C) 1 day after intraventricular administration	30
14	CT imaging of hydrocephalus treated by external venticular drainage (EVD). a Thalamic haematoma obstructing the aqueduct. b The evolution of hydrocephalus. c Inserting a catheter into right lateral ventricle. d After EVD	31,32
15	T1-weighted image (T1WI) MRI shows isointense to mildly low-signal medial temporal lobe hematoma	36
16	MRI of a hypertensive thalamic intraparenchymal and adjacent clotted intraventricular hemorrhage	39

17	MRI with secondary intraventricular hemorrhage (IVH)	40
18	Endoscopic view of the right foramen of Monro.	52
19	Endoscopic view of floor of the third ventricle	52
20	Pre-operative CT scan: scan Representative pre-operative	53
	CT scan of a patient showing a thalamic haemorrhage with	
	associated hydrocephalus and blood in the third and both	
	lateral ventricles case1	
21	Pre-operative CT scan. Representative pre-operative CT	53
	scan of a patient showing a posterior fossa haemorrhage with	
	associated hydrocephalus and blood in the ventricles. Case 2	
22	Post operative CT scan. Post operative CT scan of the patient	54
	depicted in case 1. Scan done seven days after surgery	
	showing resolving hydrocephalus and the absence of	
	intraventricular blood. Case 1	
23	Post operative CT scan. Post operative CT scan of the patient	54
	depicted in case 2. Scan done five days after surgery showing	
	resolving hydrocephalus. Case 2	
24	Set of endoscope and application of neuronavigation on it.	55
25	Sequence of steps for the ventricular cleansing of casting	57
	clots	
26	A transparent guiding sheath is used for endoscopic	57
	hematoma evacuation. B, the sheath stylet. C, suction tubes	
	for endoscopic hematoma evacuation. D, transparent cap	
	attached to a flexible endoscope	
27	Immediate postoperative CT scans obtained after the	58
	endoscopic aspiration of the blood clots	
28	Rigid endoscope is inserted through the sheath and the	58
	hematoma is evacuated with a suction tube	
29	The endoscope is held with the left hand by the handle, and	59
	instruments are introduced with the right hand	

30	The set of external ventricular drainage	62
31	The anatomical zero reference point of EVD	62
32	CT brain show intracerebral deep seated hemorrhage with intraventricular extension(case 1)	76
33	6 day follow up CT brain (case 1)	77
34	18 day follow up CT brain (case 1)	77
35	3month follow up CT brain(case 1)	77
36	CT brain show massive intracerebral hemorrhage with intraventricular extension(case 2)	78
37	Follow up CT brain partial evacuation of hemorrhage with external ventricular drainage pass to other lateral ventricle(case 2)	79
38	CT scan showed a right putaminal ICH with intraventricular extension.(case 3)	80
39	Follow up CT brain (one week) show improve intracerebral Hge& Intraventricular extension(case 3)	81
40	Follow up CT brain (10 days) show improve intracerebral Hge & Intraventricular extension(case 3)	81
41	Follow up CT brain (2 week) show resoption of intracerebral hge & Intraventricular extension(case 3)	82
42	Graph show the difference in age in each group	83
43	Doughnut show Gender Distribution	84
44	Graph show Gender Distribution according to groups	85
45	Graph show Association with Diabetes Mellitus and Hypertension	86
46	Graph show Association of anticoagulant drugs	87
		89

48	Graph show hospital stays in EVD alone cases	89
49	Graph show Relationship between neurological state on admission and hospital stay	90
50	Curve show the initial GCS in endoscopic &EVD cases	91
51	Graph show Volumes of intraventricular hemorrhage in each group and their relation to GCS	92
52	Graph show relationship between neurological state on admission and outcome	93
53	Graph show relationship between neurological state on admission and outcome	94
54	Curve show operative duration of all patients (endoscopic &EVD)	95
55	Pie show Final Outcome	96
56	Pie show mortality in each approach	97

List of table

List of table		
NO	Table	Page
1	Calculating the IVH volume quick reference	34,35
	for converting IVHS to IVH volume	73
2	Maximal ventricular volume of each ventricle	35
3	The difference in age in each group	83
4	Gender Distribution	84
5	Association with Diabetes Mellitus and	86
6	Hypertension Association of anticoagulant drugs	87
0		67
7	Hospital (ICU &Ward) stays in all cases	88
8	Relationship between neurological state on	90
	admission and hospital stay	
9	Volumes of intraventricular hemorrhage in each group and their relation to GCS	92
10	Relationship between neurological state on admission and outcome	93
11	Relationship between neurological state on	94
	admission and outcome in each group	
12	Final Outcome	96

	List of Abbreviations	
AVM	Arteriovenous malformation	
CBF	Cerebral blood flow	
СРР	Cerebral perfusion pressure	
EVD	External ventricular drainage	
FDV	Flow deficit volume	
FFP	Fresh frozen plasma	
GCS	Glasgow coma scale	
H	hydrocephalus	
ICH	intracranial hemorrhage	
ICP	Intracerebral pressure	
IPH	Intraparenchymal hemorrhage	
IVF	Intraventricular Fibrinolysis	
IVH	Intraventricular hemorrhage	
IVHS	Intraventricular hemorrhage score	
LV	lateral ventricle	
MAP	Mean arterial pressure	
PIVH	Peri and intraventricular hemorrhage	
PVH	Periventricular hemorrhage	
RV	Right ventricle	

VP	Ventriculo-peritoneal
SICH	Spontaneous intracerebral hemorrhage

Introduction

Spontaneous intracerebral haemorrhage (SICH) is responsible for 10-15% of the acute stroke. The common causes of SICH are hypertension, aneurysm, arteriovenous malformation (AVM), and vasculopathies. Hypertensive bleeding occurs mainly in putamen, near ruptured aneurismal site with or without subarachnoid haemorrhage, or at the site of AVM, while bleeding due to angiopathy is usually lobar. (Swamy, 2007)

An intraventricular hemorrhage, often abbreviated "IVH," is a bleeding into the brain's ventricular system, where the cerebrospinal fluid is produced and circulates through towards the subarachnoid space. It can result from physical trauma or from hemorrhage in stroke. (Hanley, 2009)

Brain hemorrhage is the most severe of the major stroke subtypes. Extension of the hemorrhage into the ventricles could occur in 40% of spontaneous ICH cases, could happen early or late in the sequence of events. Epidemiological data demonstrate that the amount of blood in the ventricles relates directly to the degree of injury and likelihood of survival. Secondary tissue injury processes related to intraventricular bleeding can be reversed by removal of clot in animals. Specific benefits of clot removal include limitation of inflammation, edema, and cell death. Restoration of cerebral spinal fluid flow, intracranial pressure homeostasis, improved consciousness, and shortening of intensive care unit stay represent the other benefits that occur from clot removal. Limited clinical knowledge exists about the benefits of intraventricular hemorrhage (IVH) removal in humans, because organized attempts to remove blood have not been undertaken in large clinical trials on a generalized scale. (Annibale and Hill,2007)

The primary hematoma and disease process are probably of more significance than the IVH. However, prognosis is also determined by the extent of the hemorrhage. Headache, vomiting, confusion, decreased level of consciousness and, in the case of secondary bleeding, hemiparesis, are common clinical findings. The clots tend to disappear within 2 weeks. (Cedars-Sinai, 2009)

Recent CT studies suggest that IVH is more frequent than previously suspected, but it is often not significant clinically. When clots are symptomatic, intraventricular drainage (possibly bilateral) may be useful, but the blood often occludes catheters used for this purpose. (Edward Feldmann, et al, 2005)

Neuroendoscopic management of severe IVH in patients was safe, efficiently reduced the amount of ventricular blood and ventricular dilatation, and effectively produced an outcome profile that compares very favorably with other more conventional treatments. (Longatti, et al, 2004)

Aim of work

To identify the beneficial of usage of neuroendoscope in cases of intraventricular hemorrhage extended from intracerebral hemorrhage as regard safety, efficiency, and efficacy in comparison to usage of external ventricular drainage as a treatment for intraventricular hemorrhage.

Anatomy

Ventricles of the Brain

The lateral ventricles, the 1st and 2nd ventricles, are the largest cavities of the ventricular system and occupy large areas of the cerebral hemispheres. Each lateral ventricle opens through an interventricular foramen into the 3rd ventricle. (**Fujii, et al 2002**)

The 3^{rd} ventricle is a slit like cavity between the right and left halves of the diencephalons is continuous posteroinferiorly with the cerebral aqueduct, a narrow channel in the midbrain connecting the 3^{rd} and 4^{th} ventricles. (Fujii, et al, 2002)

The pyramid-shaped 4th ventricle in the posterior part of the pons and medulla extends inferoposteriorly. Inferiorly, it tapers to a narrow channel that continues into the cervical region of the spinal cord as the central canal. (**Fujii, et al, 2002**)

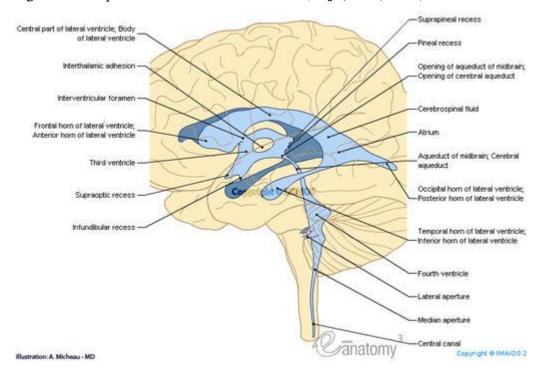


Figure 1: diagram show ventricular system (Fujii, et al, 2002)