

Microwave Dielectric Properties of Alkaline Earths Titanate-Lanthanides Titanate Ceramic Bodies

A Thesis Submitted By

AISHA EZZ EL-DIN REDA GABER MOHAMED

AISHA EZZ EL-DIN REDA GABER MOHAMED ((M. Sc. in Chemistry)

For Fulfillment of the Degree of Ph. D. in Chemistry

Department of Chemistry
Faculty of Science
Ain Shams University
Cairo, Egypt
2013

Microwave Dielectric Properties of Alkaline Earths Titanate-Lanthanides Titanate Ceramic Bodies

A Thesis Submitted By

AISHA EZZ EL-DIN REDA GABER MOHAMED

AISHA EZZ EL-DIN REDA GABER MOHAMED

(M. Sc. in Chemistry)

For Fulfillment of the Degree of Ph. D. in Chemistry

Supervised by

Prof. Dr. Eglal Rimon Souaya

Professor of Inorganic Chemistry, Department of Chemistry, Faculty of Science, Ain Shams University.

Prof. Dr. Doreya Mohamed Mahmoud Ibrahim

Professor of Chemistry and Technology of Ceramic, Department of Ceramics, Refractories and Building Materials, NRC

Prof. Dr. Doaa Abdel Nabi Abdel Aziz

Professor of Chemistry and Technology of Ceramic, Department of Ceramics, Refractories and Building Materials, NRC

Approval Sheet P.Sc. Thesis

Entitled

Microwave Dielectric Properties of Alkaline Earths Titanate-Lanthanides Titanate Ceramic Bodies

Thesis Advisors	Thesis Approved
Prof. Dr. Eglal Rimon Souaya	•••••
Professor of Inorganic Chemistry,	
Department of Chemistry, Faculty	
of Science, Ain Shams University.	
Prof. Dr. Doreya Mohamed Mahmoud Ib	rahim
Professor of Chemistry and Technology of	
Ceramic, Department of Refractories, Ceramic	cs and
Building Materials, NRC.	
Prof. Dr. Doaa Abdel Nabi Abdel Aziz	•••••
Professor of Chemistry and Technology of	
Ceramic, Department of Refractories, Ceramic	cs and
Building Materials, NRC.	

Head of Chemistry Department

Prof. Dr. Hesham Ahmed Madian

ACKNOWLEDGMENT

 \mathbf{T} hanks and indebtedness is directed first and always to ALLAH

for all his graves, without the power he gave me, the accomplishment of his work would have been certainly impossible.

The author feels a deep sense of gratitude to all the people associated in various ways during the progress and completion of this work.

I am cordially indebted to Prof. *Dr. Eglal Rimon Souaya*, (Faculty of Science, Ain Shams University) for her supervision, constructive criticism and deep concern in this work.

My sincere gratefulness to Prof. Dr. *Doreya Mohamed Mahmoud Ibrahim*, Prof. of Ceramic Chemistry, Department of Ceramic, NRC, for supervising the research project and fruitful suggestions during this work.

I would like to express my deep gratitude, and sincere thanks to Prof. Dr. *Doaa Abdel Nabi Abdel Aziz*, Prof. of Ceramic Chemistry, Department of Ceramic, NRC, for suggesting and supervising the research project, helpful discussions and also for the sincere guidance with encouragement during her direct supervision throughout this work.

I am especially indebted to my mother, my father and brothers for their love, sacrifice, and support. They are my first teachers after I came to this world and have set great examples for me about how to live, study, and work.

Abstract

The microwave dielectric properties, the microstructures and the physical properties of (1-x) $A^{2+}TiO_{3-} \times (A^{1+}_{0.5}A^{3+}_{0.5}) TiO_3 ((A^{2+} = Ca),$ $(A^{1+} = Na, Li, K), (A^{3+} = La, Nd)) (x = 0.08, 0.10, 0.20, 0.50 and 0.90)$ but incase potassium (x = 0.02, 0.05, 0.08, 0.10, 0.20, 0.50, 0.90 and 1.0) ceramics are very important candidates for millimeter-wave applications (e.g. filter and antenna). Structural X-ray diffraction analysis confirmed the perovskite structure. The microstructure of the sintered ceramic bodies was analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDS) microanalysis. The Vector Network Analyzer (VNA) in the frequency range from 50 MHz-13GHz was used to measure the dielectric properties at microwave (MW) frequency range. Several samples with La₂O₃ or Nd₂O₃ were prepared by conventional solid-state route. It was found that the increasing of lanthanides titanates in form of lanthanum or neodymium to CaTiO₃ ceramic bodies in most case decreased the sintering temperature by 50°C at temperature in the range 1100-1350°C. The investigated bodies show a dense microstructure due to the liquid phase development. The results revealed that the microwave dielectric characteristics can be effectively controlled by lanthanides content, secondary phase and microstructure developed. The maximum result of potassium lanthanum content recorded with 10CT-

KLT (x=0.90) and KLT (x=1.0) ceramics sintered at 1300 °C/2h, was ε_r = 7.8-7.3, respectively, while the same values of high quality factor (Qxf) = 43.33*10⁴ at 13 GHz, and low dielectric loss = 0.03*10⁻³ was obtained. According to the microstructure obtained, rod like grains in the KLT body might have enhanced microwave property. Also, the higher values recorded with potassium neodymium oxide were obtained with lower KNT content for 92CT-KNT (x=0.08) ceramic body, sintered at 1300 °C/2h, where (ε_r) =40, Qxf value (3.33*10⁴ at 5 GHz) with lower dielectric loss value (0.13x10⁻³) may be due to uniform shape which have played an important role for the enhanced microwave property.

CONTENTS

List of Figures	Page i
List of Tables	vi
Abstract	viii
Chapter I: I. Introduction	1
I.1. Ceramic Materials	1
I.2. Types of Dielectric Materials	2
I.3. Types of Perovskite Dielectric Ceramic Bodies	14
I.4. Characterization of Microwave Dielectric Materials	15
I.5. Types of Microwave Perovskite Ceramic Bodies	24
I.6. Previous Work on the Dielectric Properties of Complex Perovskite ceramics	27
Aim of the work	39
Chapter II:	
II. Materials and Methods	40
I.1. Starting materials	40
II.2. Method of Preparation	40
Chapter III:	
III. Results and Discussion	47

III.I.1. Characterization of (1-x)CaTiO ₃ -	47
$x(Li^{1+}_{0.5}La^{3+}_{0.5})TiO_{3}(CT\text{-}LLT)\ Samples$	
1. Phase Composition	47
2. Densification Parameters	53
3. Microwave Dielectric Properties	55
III.I.2. Characterization of (1-x) CaTiO ₃ -	59
$x(Na^{1+}_{0.5}La^{3+}_{0.5})$ TiO ₃ (CT-NLT) Samples	
1. Phase Composition	59
2. Densification parameters	64
3. Microwave Dielectric Properties	66
III.I.3. Characterization of (1-x)CaTiO ₃ -	70
$x(K_{0.5}^{1+}La_{0.5}^{3+})TiO_3$ (CT-KLT) Samples	
1. Phase Composition	70
2. Densification parameters	78
3. Microwave Dielectric Properties	80
III.I. Conclusion	84
III.II. Characterization of (1-x)CaTiO ₃ -	85
$x(Li_{0.5}^{1+}Nd_{0.5}^{3+})TiO_3$ (CT-LNT) Samples	
1. Phase Composition	85
2. Densification parameters	88
3. Microwave Dielectric Properties	92
III.II.2. Characterization of (1-x)CaTiO ₃ -	96
$x(Na^{1+}_{0.5}Nd^{3+}_{0.5})TiO_3$ (CT-NNT) Samples	
1. Phase Composition	96

2. Densification parameters	101
3. Microwave Dielectric Properties	101
III.II.3. Characterization of (1-x)CaTiO ₃ -	105
$x(K_{0.5}^{1+}Nd_{0.5}^{3+})$ TiO ₃ (CT-KNT) Samples	
1. Phase Composition	106
2. Densification parameters	114
3. Microwave Dielectric Properties	114
III.II. Conclusion	119
Chapter IV:	
Summary and Conclusions	120
IV.1. Summary	120
IV.2. Conclusion	126
References	128
Arabic summary	

LIST OF FIGURES

Fig. No.	List of Figures	Page
Fig. 1:	Sales of Smartphone devices on a global scale by	3
	the Telecommunication Agency of the United	
	Nations	
Fig. 2:	Cubic ABO ₃ (BaTiO ₃) Perovskite Structure	8
Fig. 3:	Crystal structure of BaTiO ₃ , (a) Above the Curie	
	point the cell is cubic (b) Below the Curie point	
	the structure is tetragonal with Ba^{2+} and Ti^{4+} ions	
	displaced relative to O ²⁻ ions	
Fig. 4:	Distorted perovskite of CaTiO ₃ with	11
	orthorhombic symmetry	
Fig. 5:	Perovskite cubic structure of CaTiO ₃	12
Fig. 6:	Applications of Microwave Dielectric Ceramics	16
	at microwave and mm-wave frequencies.	
Fig. 7:	Schematic showing a resonant peak and	19
	associated parameters.	
Fig. 8:	Process of shaping of materials used in satellite	35
	communication	
Fig. 9:	Show Schematic resonance peak	46
Fig. 10:	XRD patterns of calcined (1-x)CaTiO ₃ -	48
	$x(Li_{0.5}La_{0.5})TiO_3$ powders	
Fig. 11:	XRD patterns of sintered (1-x)CaTiO ₃ -	48
	x(Li _{0.5} La _{0.5})TiO ₃ ceramic bodies	
Fig. 12:	Microstructure of $(1-x)CaTiO_3-x(Li_{0.5}La_{0.5})TiO_3$	51
	at sintered temperature (a) x=0.08 (92CT-LLT),	
	(b) x=0.10 (90CT-LLT), (c) x=0.20 (80CT-LLT),	

(d) x=0.50 (50CT-LLT) and (e) x=0.90 (10CT-LLT). Fig. 13: **Physical** of 54 properties $(1-x)CaTiO_3$ x(Li_{0.5}La_{0.5})TiO₃ bodies as a function of different sintered temperature. Microwave dielectric properties of (1-x)CaTiO₃-Fig. 14: 57 x(Li_{0.5}La_{0.5})TiO₃ ceramics (a) Dielectric constant (b) Quality factor and Dielectric loss as function of x values. calcined Fig. 15: XRD patterns of (1-x)CaTiO₃-60 x(Na_{0.5}La_{0.5})TiO₃ powders Fig. 16: **XRD** patterns of sintered (1-x)CaTiO₃-60 x(Na_{0.5}La_{0.5})TiO₃ ceramic bodies Fig. 17: Microstructure of (1-x)CaTiO₃-x(Na_{0.5}La_{0.5})TiO₃ 63 at sintered temperature (a) x=0.08 (92CT-NLT), (b) x=0.10 (90CT-NLT), (c) x=0.20 (80CT-NLT), (d)x=0.50 (50CT-NLT) and (e) x=0.90 (10CT-NLT). Fig. 18: Physical properties of (1-x)CaTiO₃-65 x(Na_{0.5}La_{0.5})TiO₃ bodies as a function of different sintered temperature. Fig. 19: Microwave dielectric properties of (1-x)CaTiO₃-68 x(Na_{0.5}La_{0.5})TiO₃ ceramics (a) Dielectric constant (b) Quality factor and Dielectric loss as function of x values. 71 Fig. 20: XRD patterns of calcined $(1-x)CaTiO_3-$

 $x(K_{0.5}La_{0.5})TiO_3$ powders

Fig. 21: **XRD** of sintered $(1-x)CaTiO_3-$ 71 patterns $x(K_{0.5}La_{0.5})TiO_3$ ceramic bodies Fig. 22: of $(1-x)CaTiO_3-$ 72 XRD patterns calcined $x(K_{0.5}La_{0.5})TiO_3$ powders of $(1-x)CaTiO_3-$ 72 Fig. 23: XRD patterns sintered $x(K_{0.5}La_{0.5})TiO_3$ ceramic bodies Microstructure of $(1-x)CaTiO_3-x(K_{0.5}La_{0.5})TiO_3$ Fig. 24: 75-76 at sintered temperature (a) x=0.02 (98CT-KLT), (b) x=0.05 (95CT-KLT), (c) x=0.08 (92CT-KLT), (d) x=0.10 (90CT-KLT), (e) x=0.20(80CT-KLT)(f) x=0.50 (50CT-KLT) and (g) x=0.90 (10CT-KLT) and (h) KLT 79 Fig. 25: Physical properties of $(1-x)CaTiO_3$ x(K_{0.5}La_{0.5})TiO₃ bodies at sintered temperature (a) with x = 0.02, 0.05 0.08, 0.10 and 0.20 and (b) with x = 0.50, 0.90 and 1.0. Microwave dielectric properties of (1-x)CaTiO₃-Fig. 26: 82 $x(K_{0.5}La_{0.5})TiO_3$ ceramics (a) Dielectric constant (b) Quality factor and Dielectric loss as function of x values. Fig. 27: XRD patterns of calcined (1-x)CaTiO₃-86 $x(Li_{0.5}Nd_{0.5})TiO_3$ powders Fig. 28: XRD patterns of sintered (1-x)CaTiO₃-86 x(Li_{0.5}Nd_{0.5})TiO₃ ceramic bodies Microstructure of (1-x)CaTiO₃-x(Li_{0.5}Nd_{0.5})TiO₃ 89 Fig. 29: at sintered temperature (a)x=0.08 (92CT-NLT), (b)x=0.10 (90CT-NLT), (c)x=0.20 (80CT-NLT),

(d)x=0.50(50CT-NLT)and(e)x=0.90(10CT-NLT).

Fig. 30:	Physical properties of (1-x)CaTiO ₃ -	91
	$x(Li_{0.5}Nd_{0.5})TiO_3$ bodies at different sintered	
	temperature.	
Fig. 31:	Microwave dielectric properties of (1-x)CaTiO ₃ -	94
	$x(Li_{0.5}Nd_{0.5})TiO_3$ ceramics (a) Dielectric constant	
	(b) Quality factor and Dielectric loss as function	
	of x value	
Fig. 32:	XRD patterns of calcined (1-x)CaTiO ₃ -	97
	$x(Na_{0.5}Nd_{0.5})TiO_3$ powders	
Fig. 33:	XRD patterns of sintered (1-x)CaTiO ₃ -	97
	x(Na _{0.5} Nd _{0.5})TiO ₃ ceramic bodies	
Fig. 34:	Microstructure of $(1-x)CaTiO_3-x(Na_{0.5}Nd_{0.5})TiO_3$	100
	at sintered temperature (a) x=0.08 (92CT-NLT),	
	(b) x=0.1 (90CT-NLT), (c) x=0.2 (80CT-NLT),	
	(d) x=0.5 (50CT-NLT) and (e) x=0.90 (10CT-	
	NLT).	
Fig. 35:	Physical properties of (1-x)CaTiO ₃ -x(Na _{0.5}	103
	Nd _{0.5})TiO ₃ bodies at different sintered	
	temperature.	
Fig. 36:	Microwave dielectric properties of (1-x)CaTiO ₃ -	104
	x(Na _{0.5} Nd _{0.5})TiO ₃ ceramics (a) Dielectric constant (b) Quality factor and Dielectric loss as	
E:- 27.	function of x value VRD rottoms of soleined (1 x)CoTiO	100
Fig. 3/:	XRD patterns of calcined (1-x)CaTiO ₃ -	108
E:- 20.	$x(K_{0.5}Nd_{0.5})TiO_3$ powders	100
Fig. 38:	XRD patterns of sintered (1-x)CaTiO ₃ -	108
E: 20	$x(K_{0.5}Nd_{0.5})TiO_3$ ceramic bodies	100
rig. 39:	XRD patterns of calcined (1-x)CaTiO ₃ -	109
	$x(K_{0.5}Nd_{0.5})TiO_3$ powders	

Fig. 40: **XRD** patterns of sintered (1-x)CaTiO₃-109 x(K_{0.5}Nd_{0.5})TiO₃ ceramic bodies Fig. 41: Microstructure of (1-x)CaTiO₃-x(K_{0.5}Nd_{0.5})TiO₃ 111at sintered temperature (a) x=0.02 (98CT-KNT), 112 (b) x=0.05 (95CT-KNT), (c) x=0.02 (92CT-KNT), (d) x=0.10 (90CT-KNT) and (e) x=0.20 (80CT-KNT), (f) x=0.50 (50CT-KNT) and (g) x=0.90 (10CT-KNT) and (h) KNT Physical properties $(1-x)CaTiO_3-$ Fig. 42: of 116 x(K_{0.5}Nd_{0.5})TiO₃ bodies at sintered temperature (a) with x = 0.02, 0.05 0.08, 0.10 and 0.20 and (b) with x = 0.50, 0.90 and 1.0. Microwave dielectric properties of (1-x)CaTiO₃-117 Fig. 43: $x(K_{0.5}Nd_{0.5})TiO_3$ ceramics (a) Dielectric constant (b) Quality factor and Dielectric loss as function of x values.

LIST OF TABLES

Table No.	List of Tables	
Table 1:	Change in d-spacing (2θ) of peak with	49
	(1-x)CaTiO ₃ $-x$ (Li _{0.5} La _{0.5})TiO ₃	
Table 2:	EDS analysis of 50CT-LLT with x=0.50	52
Table 3:	physical and microwave dielectric properties of	58
	$(1-x)CaTiO_3-x(Li_{0.5}La_{0.5})TiO_3$ ceramic bodies at	
	different sintered temperature	
Table 4:	Change in d-spacing (2θ) of peak with	61
	(1-x)CaTiO ₃ - x (Na _{0.5} La _{0.5})TiO ₃	
Table 5:	physical and microwave dielectric properties of	69
	$(1-x)CaTiO_3-x(Na_{0.5}La_{0.5})TiO_3$ ceramic bodies	
	at different sintered temperature	
Table 6:	Change in d-spacing (2θ) of peak in	73
	$(1-x)CaTiO_3-x(K_{0.5}La_{0.5})TiO_3$	
Table 7:	EDS analysis of 80CT-KLT with x=0.20	77
Table 8:	physical and microwave dielectric properties of	83
	$(1-x)CaTiO_3-x(K_{0.5}La_{0.5})TiO_3$ ceramic bodies at	
	different sintered temperature	
Table 9:	Change in d-spacing (20) of peak with	87
	(1-x)CaTiO ₃ $-x$ (Li _{0.5} Nd _{0.5})TiO ₃	
Table 10:	EDS analysis of 0.90CT-LLT with x=0.10	90
Table :11	physical and microwave dielectric properties of	95
	$(1-x)CaTiO_3-x(Li_{0.5}Nd_{0.5})TiO_3$ ceramic bodies	
	at different sintered temperature	