In Vitro and In Vivo Analysis of New Wound Configurations with the Femtec 80kHz Femtosecond Laser

Thesis submitted for the partial fulfillment of the MD degree in ophthalmology

By

Marwa Abdel Monsef Abdel Hamid Obaid MB. Bch, M.Sc. Ophthalmology Faculty of Medicine, Ain shams University

Under supervision of

Prof. Dr. Fatma Mohamed Shafik El-Hennawi

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Prof. Dr. Ayman Abdel-Moneim Al-Said Gaafar

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Dr. Al-Hussein Aly Swelem

Lecturer of Ophthalmology Faculty of Medicine, Ain Shams University

External supervisor

Prof. Dr. Gisbert Richard

Head and Chairman -Dep. of Ophthalmology University Medical Center -Eppendorf Hamburg (UKE), Germany

> Ain Shams University Faculty of Medicine Cairo, Egypt 2014

ACKNOWLEDGEMENTS

Thanks to **God** who granted me the power to accomplish this work.

I would like to express my deep gratitude to **Prof. Dr. Fatma El-Hennawi**, Professor of Ophthalmology, Ain Shams University, for her unlimited support and advice throughout the course of this research.

Many thanks to **Prof. Dr. AymanGaafar,**Professor of Ophthalmology, Ain Shams University,who provided me with valuable comments and experience, necessary to achieve this study.

Thanks to **Dr. Al-Hussein Swelem,** Lecturer of Ophthalmology, Ain Shams University, for his great patience and help throughout the course of research.

I would like to give the best regards to my team work in Germany; **Prof. Dr. Gisbert Richard,** Head and Chairman -Dep. of Ophthalmology, University Medical Center -Eppendorf Hamburg (UKE), **Dr. Stephan Linke,** Lecturer of Ophthalmology, University Medical Center -Eppendorf Hamburg (UKE), **and Prof. Dr. UdoBartch.**, Professor of Biology and head of Ophthalmology Research Laboratory, University Medical Center -Eppendorf Hamburg (UKE). They kindly provided me with their experience in the clinical work and the laboratory research.

Special thanks to **Dr.** Azza Mohammed, Assistant Professor of Ophthalmology, Ain Shams University, who gave me a lot of her time and effort to accomplish the statistical analysis of this work.

CONTENTS	PAGE
LIST OF ABBREVIATIONS	I
LIST OF TABLES	īV
LIST OF FIGURES	VI
AIM OF THE WORK	X
INTRODUCTION	1
REVIEW OF THE LITERATURE	
 ANATOMY OF THE CORNEA 	2-9
• Tear film	3
• Corneal structure	4
• Dua's layer	7
• Corneal innervation	8
• PENETRATING KERATOPLASTY	10-15
 Conventional penetrating keratoplasty 	10
Femtosecond laser-enabled keratoplasty	12
• LAMELLAR KERATOPLASTY	16-23
Anterior lamellar keratoplasty	16
 Superficial Anterior lamellar 	17
keratoplasty (SALK)Deep Anterior lamellar keratoplasty	18
(DALK)	20
Posterior lamellar keratoplasty (PLK)	21
DSAEK/ DSEKDMEK	22
• INTRACOR	24-28
• CORNEAL WOUND HEALING AFTER	29-38
KERATOREFRACTIVE PROCEDURES	

 HISTORY AND APPLICATIONS OF 	39-43
FEMTOSECOND LASERS	
 Principles of laser-matter interaction 	39
Applications of femtosecond lasers	42
• FEMTOSECOND LASERS IN CORNEAL SURGERY	44-52
Mechanism of corneal femtodissection	44
Femtosecond laser systems for corneal	47
femtodissection	
Principles of femtodynamics	47
PATIENTS &METHODS	53-78
Clinical studies	53
• In vitro studies	64
Statistical analysis	77
	79-116
RESULTS	79
• Clinical	105
• In vitro	
DISCUSSION	116-125
• Clinical	116
• In vitro	122
- In vino	126
SUMMARY	
SUMMARI	129
REFERENCES	150
ARABIC SUMMARY	130

LIST OF ABBREVIATIONS

αSMA Alpha Smooth Muscle Actin

AC Anterior Chamber

ALKAnterior Lamellar Keratoplasty

ANOVA Analysis of Variance

AS-OCT Anterior Segment Optical Coherence Tomography

bFGF basic Fibroblast Growth Factor

BSCVABest Spectacle Corrected Visual Acuity

BSSBalanced Salt Solution

CCT Central Corneal Thickness

CO₂ Carbon Dioxide

D Diopter

DALK Deep Anterior Lamellar Keratoplasty

DLEK Deep Lamellar Endothelial Keratoplasty

DM Descemet's Membrane

DMAEKDescemet Membrane Automated Endothelial Keratoplasty

DMEKDescemet Membrane Endothelial Keratoplasty

DSAEKDescemet Stripping Automated Endothelial Keratoplasty

DSEKDescemet Stripping Endothelial Keratoplasty

ECEndothelial Cell

ECMExtracellular Matrix

EDMEndothelium- Descemet Membrane

EK Endothelial Keratoplasty

FS Femtosecond

FLEKFemtosecond Laser Enabled Keratoplasty

FLAKFemtosecond Laser-Assisted Anterior Lamellar Keratoplasty

g gram

H&L heavy and light chainsHRP Horseradish peroxidase

 H_2O water

IOL Intra-Ocular Lens

J Joule **kHz** Kilohertz **KP**Keratoplasty

LASIK Laser Assisted in Situ Keratomileusis

LK Lamellar Keratoplasty

Log MARlogarithm of Minimal Angle of Resolution

mthmonth

MMP(s) Matrix Metalloprotinase(s)

μJ microjoule

μm micrometermg milligram

mJmillijoule

ml milliliter mm millimeter

mmHgmillimeter of mercury

MEM minimum essential medium

nmnanometer

Nd:YAGNeodymium-doped Yttrium Aluminum Garnet **Nd:YLF**Neodymium-doped Yttrium Lithium Fluoride

OBL Opaque Bubble Layer

OCT Optical Coherence Tomography

P Probability

PBS Phosphate Buffered Saline

PFAParaformaldhyde

PKP Penetrating Keratoplasty

PLK Posterior Lamellar Keratoplasty

PO Postoperative

PRK Photorefractive Keratectomy

r range

RK Radial Keratotomy

SALK Superficial Anterior Lamellar Keratoplasty

SD Standard Deviation

UCVA Uncorrected Visual Acuity/////Acuity

wkweek

LIST OF TABLES

Table		Page
7.1	Technical Features of Femtec	49
9.1	Age, sex, eye operated and surgical indications in the study groups	80
9.2	Preoperative parameters among the study groups.	84
9.3	Depth of cut (patients' cornea) in μm according to type of operation	85
9.4	Depth of cut (donor cornea) in µm according to type of operation	86
9.5	Femtec rim energy in the study	86
9.6	Femtec rim energy in anterior lamellar and penetrating keratoplasties	86
9.7	Postoperative BSCVA along the period of follow up among the study groups with P value	88
9.8	Comparison of postoperative mean BSCVA along the period of follow up of Top Hat group	90
9.9	Comparison of postoperative mean BSCVA along the period of follow up of Decagon group	90
9.10	Comparison of postoperative mean BSCVA along the period of follow up of ALK group	90
9.11	Postoperative topographic astigmatism along the period of follow up among the study groups	91
9.12	Comparison of postoperative mean topographic astigmatism along the period of follow up of Top Hat group	93
9.13	Comparison of postoperative mean topographic astigmatism along the	93

	period of follow up of Decagon group	
9.14	Comparison of postoperative mean	93
	topographic astigmatism along the	
	period of follow up of ALK group	
9.15	Postoperative CCT along the period	94
	of follow up among the study groups	
9.16	Comparison of postoperative mean	96
	CCT along the period of follow up of	
	Top-hat group	
9.17	Comparison of postoperative mean	96
	CCT along the period of follow up of	
	Decagon group	
9.18	Comparison of postoperative mean	96
	CCT along the period of follow up of	
	ALK group	
9.19	Preoperative and postoperative	104
	BSCVA of patients A, B and C	
9.19	Preoperative and postoperative	104

LIST OF FIGURES

	Figure	Page
1-1	The three layers of the tear film	3
1-2	The layers of the cornea	4
1-3	Dua's layer	8
2-1	Penetrating Keratoplasty (traditional	10
	full thickness transplant)	
2-2	Customized trephination patterns with	11
	femtosecond laser-enabled	
	keratoplasty	
3-1	Evolution of posterior lamellar	21
	corneal transplantation	
4-1	INTRACOR presbyopia procedure is	25
	based on a gentle, localized change in	
	corneal curvature. The epithelium	
	and Bowman's membrane both	
	remain fully intact	
4-2	The INTRACOR procedure's rings	26
	induce some myopia to boost near	
	vision	
4-3	Bubbles in the treatment area are	26
	visible 5 minutes	
	postoperatively	• • • • • • • • • • • • • • • • • • • •
5-1	Corneal wound healing cascade	29
6-1	The course of a photodisruptive	40
= 4	process.	46
7-1	Tissue Removal	46
8-1	Corneal topography (OCULUS	54
0.2	Pentacam® HR)	
8-2	Corneal button removed in	57
	Femtosecond laser-	
	assisted Decagonal Penetrating	
0.2	Regator angline alit laws photo anglis	
8-3	Postoperative slit-lamp photographs	57
	of decagonal keratoplasty with the	
Q A	Technolas femtosecond laser	50
8-4	Tophat Incision	58

8-5	Right eye, post laser assisted top hat	59
	penetrating keratoplasty	
8-6	Schematic diagram illustrating	60
	femtosecond laser-assisted anterior	
	lamellar keratoplasty	
8-7	Preoperative superficial post-herpetic	62
	corneal opacity	
8-8	The same eye after femtosecond laser-	63
	assisted anterior lamellar	
	keratoplasty	
8-9	Human corneas mounted on an	64
	artificial anterior chamber system to	
	perform corneal cut wounds with	
	FEMTEC femtosecond laser	
8-10	In vitro holders to hold the corneas in	66
	position with agarose 0.7% gel	
8-11	Human Corneas incubated at 370 c	67
	and carbon dioxide 5%	
8-12	Pig corneas mounted on an artificial	68
	anterior chamber system to perform	
	corneal cut wounds with FEMTEC	
	femtosecond laser	
8-13	Pig corneas mounted on an artificial	69
	anterior chamber system treated with	
	FEMTEC femtosecond laser	
8-14	Corneal Flap Cutting with FEMTEC	70
	femtosecond laser	
8-15	Intrastromal femtosecond laser	71
	keratotomy is generated by a circular	
	pattern of femtosecond laser pulses;	
	the surface of a concave curved	
	contact lens serves as reference for	
	determination of the cutting depth	
8-16	INTRACOR with FEMTEC	72
	femtosecond laser	
8-17	A cryostat (Leica CM 1900, Leica	73
	Microsystems, Wetzlar, Germany).	
8-18	Microscope slides (SuperFrost Plus;	76
	Sondheim, Germany).	
L		

8-19	A IX51 microscope (Olympus, Tokyo,	77
	Japan), equipped with a XC30 Color	
	Digital Camera(Olympus, Tokyo,	
	Japan) and a fluorescent light source	
	TH4-200(Olympus, Tokyo, Japan)	
8-20	The conversion chart for the logMAR	78
	value	
9-1	Sex distribution among group 1 and	81
	group 2	
9-2	Mean age (years) distribution among	81
	group 1 and group 2	
9-3	Eye operated among group 1 and	82
	group 2.	
9-4	A Scheimpflug scan demonstrates the	87
	excellent anterior and posterior	
	contours of a cornea after FLAK	
9-5	Mean BSCVA along the period of	89
	follow up among group 1 and group 2	
9-6	Mean astigmatic error along the	92
	period of follow up among group 1	
	and group 2	
9-7	Mean CCT (µm) along the period of	95
	follow up among group 1 and group 2	
9-8	A corneal scar in the left eye of	97
	patient (A)	
9-9	A three months postoperative slit-	98
	lamp picture of patient (A) with clear	
	graft	
9-10	Preoperative Pentacamof the right	99
	eye of patient (B)	
9-11	A one day postoperative slit-lamp	100
	picture of patient (B)	
9-12	A three months postoperative	101
	pentacam of patient (B)	
9-13	A post herpetic corneal scar in the	102
	right eye of patient (C)	
9-14	A one day postoperative slit-lamp	103
	picture of patient (C)	
10-1	Conventional light microscopy after	106
<u> </u>		

	intrastromal FS laser keratotomy	
10-2	After 28 days, the newly regenerated	107
	epithelium was partially thickened	
	and showed regular stratification.	
10-3	A human cornea one day after FS-	108
	laser corneal flap cutting	
10-4	After intrastromal FS keratotomy, α-	109
	SMA-positive cells were not	
	detectable in the stroma between days	
	1 and 28 in the treated corneas	
10-5	After 28 days, the strongest	110
	expression of α -SMA; found in the	
	subepithelial stromal layers (arrows)	
	after corneal flap cutting using FS-	
	laser treatment	
10-6	Cell proliferation detected by Ki-67	112
	antibodies after FS laser keratotomy	
10-7	Mitotic Ki67-stained cells at 3 days	112
	after surgery at and central to the flap	
	edge in corneas that had flaps formed	
	with FEMTEC femtosecond laser	
10-8	Maximal cellular apoptosis was	113
	detected 24 hours after FS laser	
	keratotomy (arrows)	
10-9	Maximal cellular apoptosis was	114
	detected 24 hours after corneal flap	
	cutting using fs-laser treatment	
	(arrows)	
10-10	On day 28, The resultant reduction of	115
	cell density (arrows) was still	
	detectable by Hoechst staining in the	
	zone of FS laser treatment	

AIM OF THE WORK

Our project aimed at two main objectives:

- 1. To analyze and compare cut quality of new 80 kHz Femtec Laser to 40 kHz.
- 2. To analyze wound healing response after femtosecond laser treatment for presbyopia (INTRACOR) and lamellar keratoplasty.

INTRODUCTION

Lasers with ultrafast pulses have been developed to decrease the energy necessary to incise tissues and to decrease damage to surrounding tissues. (1)

Femtosecond solid-state lasers are gaining more popularity in many fields of medicine. They are already used in neurosurgery and dentistry. Now, femtosecond lasers also offer advantages for ophthalmologists, due to their precise performance and the fact that the cornea is transparent for the laser beam (in contrast to excimer laser beams). (2)

Currently, five US Food and Drug Administration- approved laser systems are available on the market: IntraLase FS laser, Femtec, Femto LDV, VisuMax and WaveLight® FS200. All of these systems are based on the same working principle. (3)

Now, surgeons can use the Femtec femtosecond laser to perform many different procedures and make more precise cuts than ever before from penetrating keratoplasty (PKP) to astigmatic keratotomy (AK). While the Femtec laser is similar to the IntraLase, it does have some special characteristics including a patented patient interface, which mimics corneal curvature. As a result, the natural shape of the cornea can be maintained and less suction is needed when attaching the device to the eye than with the IntraLase. Because there is less suction on the eye, there is also less pressure inside the eye during the procedure. As a result, patients no longer experience vision blackouts during a procedure. However, the capability that most distinguishes it from other existing platforms is its potential to be used to perform intrastromal refractive surgery with no flap. (4,5)

Automated microkeratome lamellar keratoplasty remains the most popular technique for lamellar corneal surgery but the precision of the corneal cut at any corneal depth with the femtosecond laser is an important improvement in this technique. Donor lenticulae and corneal cuttings performed with the Femtec femtosecond laser can be used in the successful management of eyes requiring anterior lamellar keratoplasty. (6)

One treatment for presbyopia that has garnered much attention is INTRACOR, or intrastromal correction of presbyopia. Until recently, laser procedures for presbyopia correction required the creation of an opening into the cornea and removal of the epithelium to apply treatment to the deeper stroma. However, the INTRACOR presbyopia treatment with the Femtec femtosecond laser changes that. It allows focusing the treatment directly into the stroma, without cutting the cornea or creating an intrastromal pocket. Additionally, this intrastromal correction does not require removal of the epithelium. Therefore, the structural integrity of the cornea is maintained. INTRACOR has a minimal rate of infection and promotes wound healing with a quick procedure time. (7)

CORNEAL ANATOMY

To help understand the wound healing response after keratorefractive procedures, it is first important to review the structure of the cornea. Understanding the structure also can help explain some of the complications that can arise as a result of refractive surgery.⁽⁸⁾

The cornea is an avascular and transparent structure situated in front of the eye. Thestructural and physiological properties of the cornea determine its optical performance torefract light. The cornea is the most powerful refractive lens of the eye comprising onaverage 45 diopters (D) of the approximately 60-70 D total refractive power of the eye. The centralthickness of the cornea is between 500 to 550 micrometers (µm) and 600 to 700 µm at the cornealperiphery. This difference in thickness between the periphery and the center generates a disparity incurvature creating an aspheric optical system. The cornea has an elliptical shape when viewed frontally; this configuration arises from an extension of opaque scleral tissue that covers the cornea superiorly and inferiorly. In the adult cornea, the horizontal and vertical average diameters are 12 millimeters (mm) (range 11 to 12.5 mm) and 11 mm (range, 10 to 11.5 mm), respectively.

Tear film

The pre-corneal tear film supports and maintains the ocular surface. It lubricates theepithelium, protects the cornea from external agents, modulates wound healing through its components and, secondary to the air-tear interface, creates the first refractive surface.