ROLE OF CARDIAC MRI IN THE ASSESSMENT OF PULMONARY VASCULAR ANOMALIES IN PEDIATRIC PATIENTS WITH CONGENITAL HEART DISEASE

Thesis

Submitted in partial fulfillment of the M.D. degree in Radiodiagnosis

By
Mohamed Ahmed Elsayed Donya
M.B,B.CH, M.Sc
(Cairo University)

Under supervision of **Dr. Sahar El Mashad**

Professor of Radiodiagnosis
Faculty of Medicine
Cairo University

Dr. Seif El Din AbazaProfessor of Radiodiagnosis
Faculty of medicine
Cairo University

Dr. Wael Nabil loftyProfessor of Pediatric
Faculty of medicine
Cairo university

Abstract

This technique has the great potential of providing anatomical and

hemodynamic data not confidently obtainable by other currently used

imaging modalities. It could disclose changes not seen by other

techniques, and can be used to verify findings seen with other

modalities. Some patients with congenital heart disease present with

clinical problems related to airway compression by anomalous extra

cardiac vascular channels. MR has the advantage of delineating the

relation between the tracheobronchial tree and the anomalous vessels.

Keyword: PD, PCA, AO, BSSTP

ACKNOWLEDGEMENT

Thanks to god who enabled us to finish this work.

First of all, I would like to express my deepest gratitude and appreciation to prof. Sahar EL Mashad, professor of radiodiagnosis at Cairo University, for her continuous guidance and unlimited support throughout every step in this work.

I am grateful to Dr. Seif El Din Abaza, professor of radiodiagnosis at Cairo university, for his constructive supervision and continues encouragement which allowed me completion of this study. I am sincerely thankful and grateful to Dr. Wael Nabil lofty, professor of pediatrics at Cairo university for his patience, true concern and advise in our work.

I should also thank all my senior staff, my colleuges and the nursing staff at both radiodiagnosis and pediatric departments who helped me a lot throughout this work.

I am indebted to my family for their sincere cooperation and continuous support which helped me in the final accomplishment of this work.

Last but not least, I am grateful to all my little patients, and their parents for their patience and faith which gave me a big boast throughout this work.

TABLE OF CONTENTS

Introduction	1
PHYSICS	4
Pulse sequence fundamentals	4
Image quality	16
Artifacts and artifact reduction technique	25
Contrast medium	25
Magnetic resonance angiography	25
CURRENT CARDIOVASCULAR IMAGING	32
i-Echocardiography	32
Two dimensional echocardiography	33
Trans esophageal echocardiography (TEE)	35
Three dimensional (3-D) imaging	36
Approach to the pediatric patient	36
The standard examination	37
Trans esophageal echocardiography	38
II diagnostic cardiac catheterization	39
Aim of the procedure and data interpretation	39
Diagnostic catheter complications	42
ADVANCED IMAGING TECHNIQUES	43
I- Computed Tomography	44
II- Magnetic Resonance Imaging	45
General patient preparation	46
Specific patient preparation	50
Pediatric and Neonatal Cardiac MRI.	52
MRI and pregnancy	53
Contraindications to MRI	54

Normal Anatomy	55
1- Aorta	55
2- Pulmonary arteries	57
3- Pulmonic veins	60
4- Cardiac chambers	60
Cardiovascular MR Imaging Planes and Segmentation.	63
• Introduction	63
Imaging planes for cardiac structures	64
 Imaging planes for great vessels 	75
Imaging planes for coronary arteries	78
CLASSFICATION OF VASCVLAR ANOMALIES	82
Pulmonary arteries abnormalities	82
Pulmonary atresia	89
Aorto pulmonary interrelationship abnormalities	93
Transposition of great arteries	93
Common arterial trunk	102
Double outlet right ventricle	102
Patent ductus arteriosus	104
PULMONARY ARTERIES	104
PATIENTS AND METHODS	110
CASE PRESENTATION	120
Results	165
DISCUSSION	179
CONCLUSION AND RECOMMENDATION	197
SUMMARY	199
References	201

LIST OF FIGURES

Fig.1	Inversion recovery (IR)	5
Fig.2	Output enhancements: multi echo & multi slice	7
Fig.3	Multiple echo acquisition	8
Fig.4	Multiple slice acquisition	9
Fig.5	Reduced acquisition (zero filling)	10
Fig.6	Spin echo (SE)	11
Fig.7	Gradient echo imaging (GE) or fast field echo (FFE)	12
Fig.8	Echo planar imaging (EPI)	15
Fig.9	Optimizing imaging conditions	16
Fig.10	Flow enhancement	22
Fig.11	Regional saturation technique (REST)	22
Fig.12	High flow void phenomenon	23
Fig.13	M2D technique.	28
Fig.14	M2D technique.	28
Fig.15	The three basic tomographic imaging planes used in echocardiography	33
Fig.16	Visualization of the heart's basic tomographic imaging planes by various transducer positions.	34
Fig. 17	Six element phased array cardiac surface coil	48
Fig. 18	Coronal scout image where the coil placement in too low	48
Fig. 19	Vectrocardiogram system (VCG) with four skin electrodes	49
Fig.20	Blood pressure & pulse oximetry monitor	52

Fig.21	T1 weighted image in axial plane	56
Fig.22	T1 weighted image in sagittal plane	57
Fig. 23	T1 weighted image in coronal plane	59
Fig. 24	BSSFP sequence showing RV inlet & outlet view	61
Fig. 25	BSSFP sequence showing LVOT view	61
Fig. 26	T1 weighted image in axial plane showing coronary sinus	62
Fig.27	Axial T1 weighted plane through the mid thorax	65
Fig.28	Cardiac axis imaging planes for the left ventricle.	66
Fig.29	Short axis stack for analysis of ventricular volumes in horizontal long axis plane.	68
Fig.30 a-d	Imaging planes that can be aligned form the basal short axis slice.	69
Fig. 31 a-c	Alignment of the aortic value plane	71
Fig. 32 a-c	Alignment of the mitral valve plane	72
Fig. 33 a-c	Alignment of the tricuspid valve plane	72
Fig. 33- a-	Alignment of the RV inflow/outflow view	72
Fig. 34 a-d	Alignment of the thoracic aorta using a 3-point plane	73
Fig. 35 a-c	RPA & LPA planes	74
Fig. 36 a-d	Alignment of the right coronary artery	76
Fig. 37 a-d	Alignment of the left coronary artery (tangential view)	77
Fig. 38 a-d	Alignment of the left coronary artery (perpendicular view)	79
Fig. 39 a-b	Right ventricular outflow tract in Tetralogy	80

	of Fallot.	
Fig. 40 a-b	Modified blalock- Taussig (BT) shunts.	81
Fig. 41 a-d	RVOT aneurysm	83
Fig. 42 a-c	MR phase contrast flow images through the pulmonary artery	83
Fig. 43 a-d	Volume rendered 3D reconstruction from gadolinium enhanced MR angiograms of the RVOT.	85
Fig. 44 a-b	Volume rendered 3D reconstruction from gadolinium enhanced MR angiograms of the pulmonary arteries	86
Fig. 45	Volume rendered 3D reconstruction of a patient with pulmonary atresia /VSD	87
Fig. 46	Volume rendered 3D reconstruction of a patient with severe pulmonary conduit stenosis.	88
Fig. 47 a-e	Axial dark blood images of transposition of great arteries.	90
Fig.48	Volume rendered 3D reconstruction of the arterial switch.	91
Fig. 49	Volume rendered 3D reconstruction of the arterial switch.	93
Fig. 50	Volume rendered 3D reconstruction of the arterial switch	95
Fig. 51	MR coronary angiogram in a patient with arterial switch operation	96
Fig. 52	BSSFP images of intra atrial baffles in a Senning operation.	98
Fig. 53 a-b	BSSFP images of a patient with congenitally corrected transposition of great arteries	99
Fig. 54 a-b	Left pulmonary artery sling	106

Fig. 55 a-c	Patient with absent pulmonary valve syndrome.	107
Fig. 56 a-b	An example of overestimation of pulmonary venous narrowing on MR angiograms.	109
Fig. 57	Case 1	123
Fig. 58	Case 2	127
Fig. 59	Case 3	130
Fig. 60	Case 4	133
Fig. 61	Case 5	165
Fig. 62	Case 6	139
Fig. 63	Case 7	142
Fig. 64	Case 8	145
Fig. 65	Case 9	149
Fig. 66	Case 10	152
Fig. 67	Case 11	154
Fig. 68	Case 12	159
Fig. 69	Case 13	163
Chart 1	Percentage of cases regarding clinical complaint	165
Chart 2	Percentage of cases regarding consanguinity	166
Chart 3	Percentage of cases regarding the operative status	166
Chart 4	Percentage of cases related to the type of vascular anomaly.	168
Chart 5	Number of cases with pulmonary artery problem by echocardiography	169
Chart 6	Number of cases with pulmonary artery problem by MRI	170
Chart 7	Number of cases with pulmonary venous problem by echocardiography.	173

Chart 8	Number of cases with pulmonary venous anomaly by MRI	173
Chart 9	Percentage of cases regarding the type of PAPVD.	174

LIST OF TABLES

Table (1)	The characteristics of inflow MRA and	26
	its type	
Table (2)	The characteristics of PCA and its type	31
Table (3)	Clinical complaint of included patients	165
Table (4)	Number of cases related to consanguinity	165
Table (5)	The operative status of the included	166
	patients	
Table (6)	Classification of patients according to	168
	pulmonary vascular anomaly by MRI	
Table (7)	Number of pulmonary abnormalities	169
	cases by echocardiography	
Table (8)	Number of cases with pulmonary artery	170
	problem by MRI	
Table (9)	Number of cases with pulmonary venous	172
	problem by echocardiography	
Table (10)	Number of cases with pulmonary venous	173
	anomaly by MRI	
Table (11)	Number of cases regarding the type of	174
	PAPVD	

Table (12)	Post operative cases	178

LIST OF ABBREVIATIONS

MRI	Magnetic resonance imaging
CT	Computed tomography
3D	Three dimensional
TE	Echo time
TR	Repetition time
RT	Radiofrequency
TTE	Fast field echo
TID	Free induction decay.
SE	Spin echo
GE	Gradient echo
SNR	Signal to noise ratio
FOV	Field of view
PD	Proton density
TOF	Time of flight
Gd DTPA	Gadopentate dimeglumine
2D	Two dimensional
PCA	Phase contrast angiography
US	Ultrasound
PW	Pulsed wave

LA	Left atrium
RV	Right ventricle
RA	Right atrium
LV	Left ventricle
PA	Pulmonary artery
AO	Aorta
TTE	Transthoracic echo
TEE	Trans esophageal echo
CHD	Congenital heart disease
CMR	Cardiac magnetic resonance
ECG	Electrocardiogram
VCG	Vector cardiogram
LMB	Left main bronchus
RMB	Right main bronchus
SVC	Superior vena cava
IVC	Inferior vena cava
RPA	Right pulmonary artery
LPA	Left pulmonary artery
AZY	Azygous vein
BSSTP	Balanced steady state free precession

APM	Anterior papillary muscle.
MB	Moderator band
CS	Coronary band
TV	Tricuspid valve
MV	Mitral value
ASD	Atrial septal defect
VSD	Ventricular septal defect
LVOT	Left ventricle outflow tract
RVOT	Right ventricular outflow tract
OLA	Vertical long axis
HLA	Horizontal long axis
SA	Short axis
4CH	Four chamber
AV	Atrioventricular
LMT	Left main trunk
LAD	Left anterior descending
LCX	Left circumflex
RCA	Right coronary artery
PDA	Patent ductus arteriosus
TOF	Tetralogy of Fallot