Magnetic Resonance Imaging of Brain for Detection of Morphological Changes in Children with Beta-Thalassemia Major

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Dina Tharwat Mohamed M.B.,B.ch., (2006)

Supervisors

Prof. Mohsen Saleh El-Alfy

Professor and Head of Pediatrics Department Faculty of Medicine, Ain Shams University

Dr. Rasha Hussien Ali Hussien

Assistant Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Rania Hamed Shatla

Assistant Professor of Pediatrics Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University
2014

First and foremost, I thank Allah for helping and guiding me in accomplishing this work.

I would like to express my sincere gratitude to Prof.

Mohsen Saleh El-Alfy, Professor and Head of Pediatrics

Department, for his great support and stimulating views.

His active, persistent guidance and overwhelming kindness have been of great help throughout this work.

I must extend my warmest gratitude to Prof. Rasha Wassien Ali Hussien, Professor of Pediatrics, for her great help and faithful advice. Her continuous encouragement was of great value and support to me.

I must extend my warmest gratitude to Dr. Rania Hamed Shatla, Assistant Professor of Pediatrics, for her great help and faithful advice in order to reach the success of this work.

Last but definitely not least, I would like to thank my family for being always there for me and for all the suffering and hardships I made them face from the day I entered this world. To them, I owe my life.

Dina Thanwate Whollawed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	3
Review of Literature	
Chapter (1): Thalassemia	4
Chapter (2): Magnetic Resonance Imaging (MRI)	40
Chapter (3): MRI Brain in Thalassemia Major P	atients46
Subjects and Methods	50
Results	55
Discussion	77
Summary	86
Conclusion	89
Recommendation	90
References	91
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Descriptive clinical data of studied ca	
Table (2):	Descriptive clinical data of iron chell therapy of studied cases & controls	
Table (3):	Tanner pubertal staging of studied gro	oups 57
Table (4):	Brain Magnetic Resonance Imfindings in cases & control	~ ~
Table (5):	Comparison between cases and contregards clinical data	
Table (6):	Comparison between cases and contregards iron chelating therapy	
Table (7):	Comparison between cases and contregards puberty	
Table (8):	Comparison between cases and contregards, signal intensity of an pituitary, pituitary height and deposition in choroid plexus.	terior iron
Table (9):	Comparison between cases with no puberty and cases with delayed puber regards pituitary height, serum fer signal intensity of anterior pituitary LIC.	ormal rty as rritin, and
Table (10):	Comparison between cases with no puberty & cases with delayed puber regards types of iron chelating therapy	ormal ty as
Table (11):	Comparison between compliant noncompliant patients as regards, cl data, serum ferritin, puberty & pitu	and inical iitary
	height.	68

List of Tables (Cont...)

Table No.	Title	Page	No.
Table (12):	Comparison between cases with no and reduced pituitary height as reclinical data & puberty.	gards	69
Table (13):	Comparison between normal and rec pituitary height as regards laboratory		70
Table (14):	Comparison between decreasing increasing ferritin trend as repituitary height and puberty and LIC.	gards	71
Table (15):	Correlation between pituitary height clinical data.		72
Table (16):	Association between pituitary height weight and height percentile		72
Table (17):	Association between pituitary height type of iron chelating therapy, complia		73
Table (18):	Correlation between pituitary height laboratory data		73
Table (19):	Association between pituitary height puberty, and signal intensity of an pituitary.	terior	74
Table (20):	Correlation between s.ferritin & LIC		
	Association between serum fer puberty & signal intensity of an pituitary	ritin, terior	

List of Figures

Fig. No.	Title	Page No.	
Figure (1):	Hemoglobin structure.		6
Figure (2):	Mechanism of ineffective erythrop and hemolysis in thalassemia		8
Figure (3):	A thalassaemic patient she characteristic facial appearance	_	12
Figure (4):	Skull X-ray of a child with β thalast major showing a hair on-appearance as a consequence of m erythroid hyperplasia	end' arked	24
Figure (5):	Management of thalassemia treatment of related complications		39
Figure (6):	Thalassemic patient with ne pituitary height (6.42 mm) & ne signal intensity.	ormal	48
Figure (7):	Thalassemic patient with repituitary height (3.44mm) & resignal intensity	duced	49
Figure (8):	Showing the distribution of patier control as regards puberty.		61
Figure (9):	Showing the distribution of patier control as regards signal intensity		62
Figure (10):	Showing comparison between cas control as regards pituitary height		63
Figure (11):	Showing comparison between cases normal puberty & cases with depuberty as regards pituitary height.	elayed	65

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (12):	Showing the distribution of cas normal & delayed puberty as resignal intensity.	egards
Figure (13):	Showing comparison between cases normal & delayed puberty as reserum ferritin	egards
Figure (14):	Showing the percentage of distribut types of iron chelating therapy a cases with normal & delayed pubert	among
Figure (15):	Showing significant positive correbetween LIC & S. ferritin	

List of Abbreviations

Abb.	Meaning
ALT:	Alanine amino transaminase
BMI:	Body mass index
BTM:	Beta thalassemia major
CBC:	Complete blood count
CP:	Choroid plexus
DFO:	Desferoxamine
DFP:	Deferiprone
DFX:	Deferasirox
FSH:	Follicle stimulating hormone
GVHD:	Graft versus host disease
Hb:	Hemoglobin
LH:	Leutinising hormone
LIC:	Liver iron concentration
MRI:	Magnetic resonance imaging
PRBCs:	Packed red blood cells
RBCs:	Red blood cells
RDW:	Red cells distribution width
TI:	Thalassemia intermedia
TIAs:	Transient ischemic attacks
TIBC:	Total iron binding capacity
UCB:	Umbilical cord blood
VTEs:	Venous thromboembolic events
WBC:	White blood cells

Introduction

Introduction

eta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals (Galanollo and Origa, 2010).

The hemoglobin disorders are the most common clinically serious single gene disorders in the world. In Egypt, beta-thalassemia is the most common type with a carrier rate varying from 5.3 to \geq 9% and a So, it was estimated that 1,000/1.5 million per year live births will suffer from thalassemia disease in Egypt (total live births 1,936,205 in 2006) (*Elbeshlawy and Youssry, 2009*).

Children with untreated thalassemia major have been reported to experience transient ischemic attacks, silent infarctions that result in brain injury, but often with subtle or undetectable clinical symptoms, stroke (Armstrong, 2005).

In most cases, neurological involvement does not initially present with relevant signs or symptoms. (i.e., is subclinical) and can only be detected during neurophysiological or neuroimaging (*Zafeiriou et al., 2006*).

Iron over load produces toxic build up in many organs, including liver, endocrine glands, and heart (Vogiatzi et al., 2009).

Deposition of iron in the anterior pituitary gland may cause hypogonadotropic hypogonadism and growth hormone deficiency, leading to delayed puberty as the most frequent endocrine complication of beta thalassemic patients (Jensen et al., 1997).

Magnetic resonance imaging (MRI) has been used for evaluation of pituitary gland damage due to siderosis (Argyropoulou et al., 2001).

Several studies have indicated signal intensity reduction of anterior pituitary gland caused by magnetic field of iron (Ambrostetto et al., 1998).

Others have shown pituitary gland height or volume decrease created by gonadotropin cell death due to iron toxicity (Argyropoulou et al., 2001, Chatterjee et al., 1998, Fujisawa et al., 1988, Lau et al., 1988).

Aim of the Work

AIM OF THE WORK

he aim of our study is to reveal any abnormal brain MRI findings in patients with beta-thalassemia major & uncover relation between MRI findings & iron overload in those patients.

Review of Literature

Chapter 1

Thalassemia

