

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

STUDIES ON SOME ECOLOGICAL AND BIOLOGICAL ASPECTS OF CUTTLEFISHES (CEPHALOPODA) IN SUEZ CANAL

2407

THESIS

SUBMITTED TO THE FACULTY OF SCIENCE - SUEZ CNAL UNIVERSITY

FOR THE REQUIREMENT OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN SCIENCE

(MARINE SCIENCE)

BY

Howaida Rushdy Gabr

M.Sc. in Marine Biology (1992)

Assistance Lecturer in Marine Science Department

Faculty of Science - Suez Canal University

Marine Science Department
Suez Canal University
Faculty of Science
Ismailia Egypt
(1999)

Supervisors

rof. Dr. Salah Gharib El Etriby

rofessor of Fish Biology and Fisheries
Head of Marine Science Department
faculty of Science

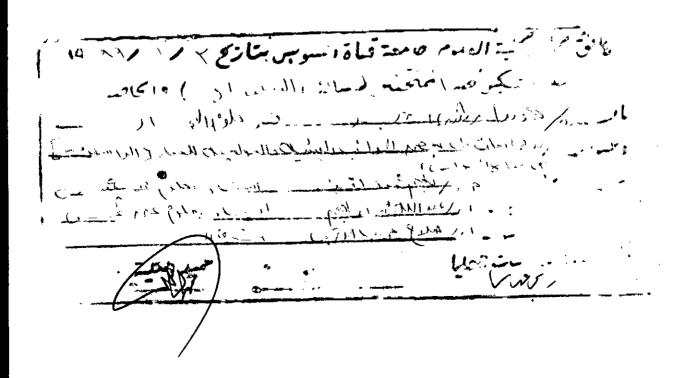
nez Canal University

Dr. Mahmoud Hassan Hanafy

Lecturer of Marine Invertebrates

Marine Science Dept.,

Faculty of Science


Suez Canal University

Prof. Dr. Roger T. Hanlon

Professor of Cephalopods Behaviour

Marine Biology Laboratory

Woods Hole Institute.

APPROVAL SHEET

Title: Studies on some ecological and biological aspects of cuttlefishes (Cephalopoda) in Suez Canal.

s. ll- Etraking

Name: Howaida Rushdy Gabr

Degree: Doctor of Philosophy of Science

Supervisors:

Prof. Dr.:Salah Gharib El-Etreby Head of Marine Science Department Faculty of Science Suez Canal University

Dr. Mahmoud Hassan Hanafy
Lecturer of Marine Invertebrates

Lecturer of Marine Invertebrates Marine Science Dept., Faculty of Science Suez Canal University

Prof. Dr. Roger T. Hanlon
Professor of Cephalopods Behaviour
Marine Biology Laboratory
Woods Hole Institute.

REFEREE COMMITTEE

Name: Howaida Rushdy Gabr

Title of thesis:

STUDIES ON SOME ECOLOGICAL AND BIOLOGICAL ASPECTS OF CUTTLEFISHES (CEPHALOPODA) IN SUEZ CANAL.

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF SCIENCE (MARINE SCIENCE)

This thesis has been approved by:

Signature

Prof. Dr.:

Naim Mahmoud Dowidar Professor of Biological Oceanography, Oceanography Department, Faculty of Science, Alexandria University.

Prof. Dr.:

Abdallah Mohamed Ibrahim Professor of Invertebrates, Head of Zoology Department, Faculty of Science, Ain Shams University.

Prof. Dr.:

Salah Gharib El-Etreby Professor of Fish biology and Fisheries, Head of Marine Science Department, Faculty of Science, Suez Canal University. -Allel-

3. El- h-r. b

To my Husband To my children

Acknowledgment

I would like to thank Prof. Dr. El-Etreby, Marine Biology Department, Suez Canal University (SCU) for supervising this dissertation. His insightful discussion, valuable comments, encouragement, reading and evaluating the manuscript are greatly appreciated. I am indebted and grateful to Dr. M. H. Hanafy, Marine Biology Department, SCU for planning the work, his continuos assistance during the practical work and constructive suggestion during the preparation of this dissertation. My thanks are also due to Prof. R. Hanlon Marine Biological Laboratory Woods Hole for supervision, valuable suggestions, supporting, profitable discussion and guidance of this work during my work in the USA.

I am grateful to Dr. A. Gabella for his assistance in outline the idea of this work. My gratitude is extended to Dr. R. Kilada for computing and statistical advice, for advice on various matters and for spending many hours under water during the field trips. I am immensely indebted to M. El-Sherbiny and M. Abdel-Aziz who have helped me in collection of my samples, for their expert preparation of the drawings and tables used in this thesis and I am very grateful to them for all their help. My thanks must go to M. Farahat for his kindly help and gave me left in midnight to collect my samples. Life without friends and good companies, would be so much cheaper and much less fun. I have to thank my friends who generally keep me going and who have been most supportive over my research especially W. Salam and F. Madkour.

I would like to express my thanks to Dr. Emma Hatfield for her help and advice about data interpretation during preparation of the manuscript. I am grateful to Dr. Maxwell and Dr. Jean Boal for frequent advice and assistance in statistical analysis, Dr. Roxanna Smolowitz for advice on histological methods, and Dr. Clyde Rober for species verification.

I like to thank my parents and my parents in law for their enthusiasm and support. Finally, no amount of thanks can express my gratefulness and appreciation for the spiritual inspiration and superb encouragement I have had from my husband and my children, Lydia, Sara and Andrew. I could not have completed this work without the love and support of my family.

Contents

Chapter 1 General Introduction	1
Chapter 2 Maturation, fecundity and seasonality of reproduction	
of Sepia pharaonis and S. dollfusi in the Suez Canal	
2.1 Introduction	5
2.2 Materials and methods	8
2.2.1 Collection and processing of specimens	8
2.2.2 Estimation of fecundity	9
2.3 Results	12
2.3.1 Sex ratio	12
2.3.2 Maturity scale	12
2.3.2.1 Oogenesis	12
2.3.2.2 Spermatogenesis	13
2.3.3 Size at first maturation	14
2.3.4 Monthly variation in maturity stages	15
2.3.5 Maturity indices	15
2.3.5.1 Monthly variation in maturity indices	15
2.3.5.2 Maturity indices and maturity stages	16
2.3.6 Mating	17
2.3.7 Reproductive output	17
2.3.7.1 Spermatophores	17
2.3.7.2 Ova	18
2.4 Discussion	20
2.4.1 Maturation	20
2.4.2 Sex ratio	21
2.4.3 Size at first maturation	21
2.4.4 Spawning season and mating	23
2.4.5 Fecundity	25
Chapter 3 Reproductive versus somatic tissue allocation in	
the cuttlefish Sepia pharaonis and S. dollfusi	
3.1 Introduction	26
3.2 Materials and Methods	29
3.2.1 Sampling and dissection	29
3.2.2 Growth analysis	29
3.2.3 Dry weight	30
3.2.4 Analysis of protein for Sepia pharaonis	31
3.2.5 Stomach content analysis	33
3.3 Results	34
3.3.1 Growth and maturity	34
3.3.2 Maturity stages and soma production, gonad production	34
3.3.3 Monthly variation in soma versus gonad production	36
3.3.4 Percentage of water content and maturity stage	38
3.3.5 Percentage of protein content and maturity stage in Sepia pharaonis	38

	Contents
3.3.6 Stomach fullness in relation to maturity stages	38
3.3.7 Stomach content in relation to species identity	39
3.4 Discussion	40
3.4.1 Allocation of resources	40
3.4.2 Food and feeding	43
Chapter 4 Life cycle, allometric growth of Sepia pharaonis and S. dollfusi	
4.1 Introduction	45
4.2 Materials and Methods	4 7
4.2.1 Data collection	47
4.2.2 Length frequency analysis	47
4.2.3 Growth rate analysis for Sepia dollfusi	47
4.2.4 Aging using the cuttlebone	48
4.2.5 Relative growth	48
4.3 Results	49
4.3.1 Distribution and life cycle stages	49
4.3.1.1 Fishing gear	49
4.3.1.2 Life cycle stages, fishing seasons and spawning location	49
4.3.1.2.1 Egg stage	49
4.3.1.2.2 Juvenile stage	50
4.3.1.2.3 Adult stage	50
4.3.2 Length frequency analysis	51
4.3.2.1 Length frequency analysis for Sepia pharaonis	51
4.3.2.2 Length frequency analysis for Sepia dollfusi	51
4.3.3 Cuttlebone growth	53
4.3.3.1 Morphology and structure of the cuttlebone in Sepia	53
4.3.3.2 Relationship between mantle length and number of lamellae	54
4.3.4 Allometric growth	55
4.4 Discussion	58
4.4.1 Abundance	58
4.4.2 Length frequency analysis	58
4.4.2.1 Length frequency analysis for S. pharaonis	58
4.4.2.2 Length frequency analysis for Sepia dollfusi	60
4.4.3 Growth in the cuttlebone	61
4.4.4 Allometric growth	62
Chapter 5 Morphometric variation in Sepia pharaonis and S. dollfusi	
5.1 Introduction	66
5.2 Materials and Methods	68
5.2.1 Sampling and measurements of morphometrics	68
5.2.2 Morphometric analysis	69
5.3 Results	70
5.3.1 Relative growth within species comparison	70
5.3.2 Relative growth between species comparison	71
5.4 Discussion	72
5.4.1 Sexual differences	72

	Contents
5.4.2 Species differences	75
Chapter 6 General Discussion	
6.1 Maturation	77
6.2 Reproduction	79
6.3 Fecundity	79
6.4 Allocation of resources	80
6.5 Feeding	81
6.6 The life cycle and allometric growth	82
6.7 Conclusion and recommendation	83
6.8 Suggestion for future research	85
Summary	86
literature cited	89
Arabic summary	

CHAPTER 1 GENERAL INTRODUCTION