

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRIC POWER AND MACHINES DEPARTMENT

INVESTIGATION OF DYNAMIC PERFORMANCE OF DIRECT TORQUE CONTROLLED PERMANENT MAGNET SYNCHRONOUS MOTORS

BY NABIL MOHAMED HAMED MOHAMED

B. SC., Ain Shams University 1998 A thesis submitted to Ain Shams University for the requirements of the degree of MASTER OF SCIENCE

IN
ELECTRICAL ENGINEERING (Power and Machines)

Under supervision of

Prof. Dr. M. A. L. Badr

Electrical Power and Machine Department Faculty of Engineering Ain Shams University

Associate Prof. Dr. H. F. Soliman
Electrical Power and Machine Department
Faculty of Engineering
Ain Shams University

Cairo 2005

Ain Shams University
Faculty of Engineering
Electrical Power and Machine Dept.

Investigation Of Dynamic Performance Of Direct Torque Controlled Permanent Magnet Synchronous Motors.

M.Sc. Thesis

By

Eng. Nabil Mohamed Hamed Mohamed

Submitted in partial fulfillments of the requirements for the M.Sc.degree in electrical engineering

Supervised By

Prof. Dr. M. A. L. Badr

Professor-Electrical Power and Machine Department Faculty of Engineering, Ain Shams University

Associate Prof. Dr. H. F. Soliman

Associated Prof. -Electrical Power and Machine Dept. Faculty of Engineering, Ain Shams University

APPROVAL SHEET

For thesis with title

Investigation Of Dynamic Performance Of Direct Torque Controlled Permanent Magnet Synchronous Motors.

Presented by

Eng. Nabil Mohamed Hamed Mohamed

Submitted in partial fulfillments of the requirements for the M.Sc. degree in electrical engineering

Approved by

Name signature

Prof. Dr. M. A. L. Badr

Associate Prof. Dr. H. F. Soliman

Examiners Committee

For thesis with title

Investigation Of Dynamic Performance Of Direct Torque Controlled Permanent Magnet Synchronous Motor.

Presented by

Eng. Nabil Mohamed Hamed

Submitted in partial fulfillments of the requirements for the M.Sc.degree in electrical engineering

Name, title and affiliation

signature

1. Prof. Dr. Fahim Ahmed Khalifa

Vice Dean,

College of Industrial Education, in Suez.

Suez Canal University.

2. Prof. Dr. Ahmed Mohamed Asaad

Electrical Power and Machine Department

Faculty of Engineering

Ain Shams University

3. Prof. Dr. Mohammad Abd El-Latif Badr

Electrical Power and Machine Department

Faculty of Engineering

Ain Shams University

4. Associated Prof. Dr. Hussien Faried El-Sayed Soliman

Electrical Power and Machine Department

Faculty of Engineering

Ain Shams University

STATEMENT

This thesis is submitted to Ain Shams University in partial

fulfillment of the requirements for M.Sc. degree in Electrical

Engineering.

The included work in this thesis has been carried out by the

author at the Electrical Power and Machine Department, Ain

Shams University. No part of this thesis has been submitted for

a degree or a qualification at any other university or institution.

Name

: Nabil Mohamed Hamed Mohamed

Signature:

Date

: / / 2005

ACKNOWLEDGEMENTS

I have the pleasure to express my deep gratitude and appreciation to my supervisors:

Prof. Dr. **Mohammad Abd El-Latif Badr** for his supervision on this research, his guidance during various phases of this work, his encouragement and his valuable suggestions through the progress of this work.

Prof. Dr. Hussien Faried El-Sayed soliman for suggesting the topic of the thesis, for valuable feedback and suggestions, for deep guidance and for the time he devoted during the preparation of this research.

I am particularly grateful to may dear parents, brothers, sisters, wife and my daughter **Mariam** for their unwavering support and encouragement.

ABSTRACT

The Direct Torque Control (DTC) is the more efficient method in AC motor control. It provides a high performance motor drive which is very important in industrial applications such as robotics, rolling mills, machine tools and paper industry.

The key issue of the DTC is to keep the stator flux constant within prescribed hysteresis band and hence the torque can be controlled by selecting the proper stator space voltage vector.

This thesis presents a study of the dynamic behavior of a direct torque controlled permanent magnet synchronous motor (PMSM) based on a simulation of the mathematical model of the system under study. This model comprises the mathematical equations of the motor in the d-q reference frame along with the inverter model and the representation of the direct torque control main blocks.

The simulation results of the DTC PMSM for different command torques show fast and accurate torque response. Meanwhile, the DTC shows robustness to follow step and ramp torque commands.

The effect of varying the sampling time on the dynamic response of the PMSM driven by DTC is carried out to select the most suitable value.

This thesis demonstrates also the dynamic response when the DTC is used for speed control. A traditional proportional-plus-integral PI controller is implemented to close the outer speed control loop. In this context, different speed trajectories are tested through the simulation program for step changes in the speed reference command. The simulation results cover different reference speeds. The effect of changing the proportional gain of the PI controller is investigated. This controller has been found capable of improving the overall dynamic response of the PMSM driven by DTC.

TABLE OF CONTENTS

LIST OF FIGURES	XIV
LIST OF TABLES	XVII
LIST OF SYMBOLS	XVIII

CHAPTER 1

INTRODUCTION

1.1-	General1
1.2-	Variable Speed Drive1
1.3-	Evolution Of Direct Torque Control2
	1.3.1- DC Motor drives
	1.3.2-AC Motor drives6
	1.3.2.1-AC Drives -frequency control using PWM7
	1.3.2.2-AC Drives -flux vector control using PWM9
	1.3.2.3-AC Drives - Direct Torque Control (DTC)12
I. 4-	Thesis Objective And Layout13

CHAPTER 2

PERMANENT MAGNET SYNCHRONOUS MOTOR (PMSM)

2.1- The Factors Taken Into Account When Selecting a Drive	15
2.2- Types Of Famous Motors Used In Industry	17
2.2.1- Commutator motors	17
2.2.2- Squirrel cage induction motors	18
2.2.3- Wound rotor induction motor	18
2.2.4- Synchronous motors	19
2.2.5- Synchronous-reluctance motors	20
2.2.6- Permanent magnet synchronous motors design	
concept	20
2.2.7- Permanent magnet-reluctance motors	22
2.3- Comparison Between PMSM And Other Motors	23
2.3.1- Losses and efficiency	23
2.3.2- Applications in industrial drives	25
2.3.3- Constant power applications	26
2.3.4- Cost and design complexity	27
2.4- The Advantages Of PMSM Motors	28
2.5- Types Of PMSM Motors According To The Construction	29
2.5.1- Surface-mounted magnets	29

2.5.2- Inset magnets30			
2.5.3- Interior (Burried) permanent magnet with radial			
magnetization30			
2.5.4-Interior (Burried) permanent magnet with circumferential			
magnetization30			
CHAPTER 3			
DIRECT TORQUE CONTROL			
3.1- General			
3.2- Main Components Of Direct Torque Control35			
3.2- Main Components Of Direct Torque Control			
3.2.1- Torque/flux comparators			
3.2.1- Torque/flux comparators			
3.2.1- Torque/flux comparators.363.2.2- Optimal switching logic.373.2.3- Adaptive motor model.41			
3.2.1- Torque/flux comparators			
3.2.1- Torque/flux comparators			

CHAPTER 4

MATHEMATICAM MODELING OF PMSM

4.1- General51		
4.2- Basic Assumptions		
4.3- Motor Equations In Original Phase Values Reference		
Frame54		
4.4- Motor Equations In The Rotor Reference Frame56		
CHAPTER 5		
SIMULATION RESULTS AND DISCUSSIONS		
5.1- General58		
5.2- Dynamic Response58		
5.2.1- Dynamic response for constant command		
torque59		
5.2.2- Dynamic response for sequential changes		
in the command torque65		
5.2.3- Dynamic response for a ramp change in the		
command torque71		

5.3-	Effect of Varying the Sampling Time on the Torqu	ie
	Ripple	76
	CHAPTER 6	
	DTC FOR SPEED CONTROL	
6.1-	General	82
6.2-	Simulation Results and Comments for Speed Con	trol82
	6.2.1- The dynamic response for constant comma	and
	speed	83
	6.2.2- The dynamic response for step command	
	Speed	89
	CHAPTER 7	
	CONCLUSION	
7.1-0	Conclusions	95
7.2-F	Future Work	96

LIST OF FIGURES

Chapter 1

- Fig. 1.1. Control loop of a DC Motor Drive
- Fig. 1.2. Control loop of an A C Drive with frequency control using PWM
- Fig. 1.3. Control loop of an AC Drive with flux vector control using PWM
- Fig. 1.4. Control loop of an A C Drive using DTC

Chapter 2

- Fig. 2.1.-a Surface mounted magnet
- Fig. 2.1.-b Inset magnet
- Fig. 2.1.-c Burried magnets with radial magnetization
- Fig. 2.1.-d Burried magnets with circumferential magnetization

Chapter 3

- Fig. 3.1. Basic direct torque-control scheme
- Fig. 3.2. Available stator voltage vectors
- Fig. 3.3. Stator spatial vector relationships
- Fig. 3.4. An inverter fed PMSM
- Fig. 3.5. The control of the stator flux linkage

Chapter 4

Fig. 4.1. Permanent Magnet Synchronous Machine

Chapter 5

- Fig.5.1. The command torque
- Fig. 5.2. The developed torque of PMSM equipped with DTC. The sampling time equals 25 μ s.
- Fig. 5.3. Motor speed
- Fig. 5.4. Stator rotating flux
- Fig. 5.5. Stator flux magnitude.
- Fig.5.6.The simulation results for the d and q axis component of the stator flux.
- Fig. 5.7. Stator flux position in space.
- Fig. 5.8. The command torque
- Fig. 5.9. The simulation results of the developed torque
- Fig. 5.10. Motor speed
- Fig. 5.11. Stator rotating flux
- Fig. 5.12. Stator flux magnitude
- Fig. 5.13. The simulation results of the direct and quadrature axis component of the stator flux.
- Fig. 5.14. Stator flux position.
- Fig. 5.15. The command torque.
- Fig. 5.16. The simulation results of the developed torque