

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

SHAPE ENERGY MATCHING USING DEFORMABLE TEMPLATES

By

Eng. Youssef Salah Tawfik Ibrahim Research Assistant Electronics Research Institute

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
COMPUTER ENGINEERING

Under the Supervision of

Prof. Dr. Samir I. Shaheen

Prof. Dr. Nadia H. Hegazi

Computer Engineering Dept., Cairo University The Electronics Research Institute

Prof. Dr. Ahmed M. Darwish

Computer Engineering Dept., Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
September 1999

13

SHAPE ENERGY MATCHING USING DEFORMABLE TEMPLATES

By

Eng. Youssef Salah Tawfik Ibrahim Research Assistant Electronics Research Institute

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
COMPUTER ENGINEERING

Approved by the
Examining Committee

Prof. Dr. Samir Ibrahim Shaheen, Thesis Main Advisor

Prof. Dr. Nadia Hamed Hegazi, Thesis Advisor

Prof. Dr. Ahmed Mahmoud Darwish, Thesis Advisor

Prof. Dr. Mohamed Abd El Hamid Ismail, Member

Prof. Dr. Magdy Fekry Ragaey, Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT September 1999

· · /, · |

-

Acknowledgments

I would like to acknowledge all the people who have assisted me during the years of my graduate study at Cairo University. I am the most grateful to my advisors, Prof. Samir Shahin and Prof. Nadia Hegazi, for their professional and personal advice and guidance. They have provided me with numerous valuable ideas, insights, and comments. They have also been very understanding and supportive. I am very fortunate to have them as my advisors. I would also like to thank Dr. Ahmed Darwish for his many insightful discussions. He has also exposed me to a rich literature of deformable template-related work. He has always been available to me to discuss ideas and concepts in computer vision and learning.

My sincere thanks go to all the members of my family. I am very grateful to my parents for their never-fading love, care, understanding, and encouragement. I could have accomplished nothing without their love and support. I would like to dedicate this dissertation to them. I would also like to thank my sisters and brothers for their support.

My colleagues at the ERI have provided help and moral support. I would like to thank them for their interests and concerns.

Abstract

Snakes, or active contours, have been previously used in computer vision applications to locate and identify objects. However, problems associated with initialization, poor convergence to boundary concavities and high computational complexity, have limited their utility. In this thesis, we have proposed and implemented a general non-occluded object localization and classification scheme using deformable templates. Prior knowledge of an object shape is described by an

The shape variations in an object class are achieved by combining a stable, invariant and unique contour model with Markov random field. The deformed shape contour then interacts with the input image via a directional edge potential field calculated from the salient edge features. A Bayesian scheme, which is based on the prior knowledge and the edge information in the input image, is employed to find a match between the deformed template and objects in the image.

To avoid the high computational complexity, a coarse-to-fine algorithm was implemented in an efficient hierarchical fashion. We have successfully applied the suggested algorithm for the detection and classification of industrial parts. Results show that the scheme is very robust with respect to scale, position and orientation changes of the objects as well as noise and local deformations of the shape.

CONTENTS

						Page
L	ST C	F FIG	URES			ix
A	CKN(OWLE	DGEMEN	NTS		iv
Al	BSTR	RACT				v
1	INT	RODU	CTION			1
	1.2 1.3 1.4 1.5	Challe Summ Contr	em Statem	proach		2 3 3 4 6 7
2	LIT	ERAT	URE SUR	RVEY		9
	2.1	Rigid	Template	Matching		10
,		2.1.1 2.1.2		on-based Matching Transform		12 14
	2.2	2.2 Deformable Models				17
		2.2.1	Free-form	n Deformation Models		19
			2.2.1.1 2.2.1.2	Active Contours Optimal Active Region		19 20
		2.2.2	Parametr	ric Deformation Models		24
			2.2.2.1	Analytical Form-based Deformable Models	Parametric	26
			2.2.2.2	Prototype-based Deformable Models	Parametric	30
			2.2.2.3	Shape Modeling and Lear	ning	32

	2.3	Discussion	34
3		FORMABLE MODELS IN BAYESIAN AMEWORK	36
	3.1 3.2	Bayes' Theorem Bayesian Formulation for Deformable Models	36 37
		3.2.1 Free-form Deformable Models3.2.2 Analytical Form-based Parametric Deformation Models	39 40
		3.2.3 Prototype-based Parametric Deformation Models	41
	3.3	Discussion	42
4	A D	EFORMABLE CONTOUR MODEL	43
	4.1 4.2 4.3	Introduction Energy Formulation Bayesian Formulation and Objective Function	43 47 49
		 4.3.1 Prior Distribution 4.3.2 Likelihood 4.3.3 Posterior Probability Density 4.3.4 Objective Function 4.3.5 Minimization Algorithm 	49 51 53 54 55
	4.4	Discussion	57
5		LTI-RESOLUTION ALGORITHM FOR CALIZATION & IDENTIFICATION	60
	5.1 5.2		61 62
		 5.2.1 Searching Using Simple Shape Features 5.2.2 Invariant Moments 5.2.3 Refinement Using Deformable Template 	62 63 65
		Matching 5 2 4 Algorithm	66