Amniotic Fluid Lamellar Body Count as a Predictor of Fetal Lung Maturity in Diabetic Patients Undergoing Elective Caesarean Section

Thesis

Submitted for partial fulfillment of The Master Degree in **Obstetrics& Gynecology**

Presented by:

Nouran Mahmoud Atif Abul-Fadl

M.B.B.Ch. 2007
Ain Shams University
Former Training Resident at Military Hospitals
Training Resident at Ahmed Maher Teaching Hospital

Supervised by:

Prof. Dr. Mohammad Abdul-Hamid Yehia

Professor of Obstetrics & Gynecology Faculty of Medicine - Ain Shams University

Dr. Ahmed Hamdy Nagib Abdul-Rahman

Assistant Professor of Obstetrics & Gynecology Faculty of Medicine - Ain Shams University

Dr. Mostafa Fouad Gomaa

Lecturer of Obstetrics & Gynecology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2014

بِشِهُ السَّالِ الْحَذَ الْحَيْمَ الْمَا الْحَيْمَ الْمَا الْحَالِينَ الْمَا الْمَالْمَا الْمَا الْم

وقُلِ اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُمْ ورَسُولُهُ والْمُؤْمِنُونَ

صدق الله العظيم سورة التوية آية (105)

First of all, I thank **God** who gave me strength to fulfill this project throughout to completion.

Then I would like to express my sincere gratitude to **Prof. Dr. Mohammad Abdul-Hamid Yehia** Prof. of Obstet. and Gyn. Ain shams University for his Generous Supervision, precious time and the advice he offered me in this study. I consider myself to be very lucky to be under his supervision.

My deep gratitude goes to **Dr. Ahmed Hamdy Nagib** Assistant Prof. of Obstet. And Gyn. Ain shams university for his invaluable efforts and tireless guidance and meticulous supervision throughout this work.

I can't forget the great help of **Dr. Mostafa Fouad Gomaa** Lecturer of Obstet. And Gyn. Ain shams university for his patience and support to get this work into light.

Finally I'd like to dedicate this piece of work to my husband and parents for their help, faith and support and to the patients whom I can't work without and to all staff members and anyone who helped me to complete this work.

Nouran Mahmoud Atif Abul-Fadl

List of Contents

Pag	e
Acknowledgment	-
List of Abbreviations	i
L ist of Figures iv	V
L ist of Tables vii	i
Introduction	[
Aim of work	1
Review of literature5	5
Subject and method73	3
Results82	2
Discussion101	1
Summary118	3
Conclusion 120)
Recommendations121	1
References122	2
Arabic summary	_

List of Abbreviations

ACOG : American College of Obstetrician

ADA : American Diabetic Association

ALI : Acute Lung Injury

AMP : Adenosine Monophosphate

ARDS : Adult Respiratory Distress Syndrome

ABCA3 : ATP-Binding Casette Transporter A3

AQPS : Aquaporin Channel

A-FLM : Amniostat

AUC : Area Under the Curve

APGAR : Appearance, Pulse, Grimace, Activity, Respiration

BMI : Body Mass Index

CaMK : Calcium-Calmodulin Dependant Protein Kinase

CBC : Complete Blood Count

CDP : Continuous Distending Pressure

CNP : Continuous Negative Pressure

CPAP : Continuous Positive Airway Pressure

CPDA : Citrate phosphate dextrose adenine

CAP : College of American Pathologists

CS : Cesarean Section

CVD : Cardiovascular diseases

DM : Diabetes Mellitus

DPH : Diphenylhexatriane

ECG : Electrocardiogram

EFW : Estimated Fetal Weight

FHR : Fetal Heart Rate

FLM : Fetal Lung Maturity

FRC : Functional Residual Capacity

F Pol : Fluorescence Polarization

F_aCO2 : Fraction of arterial carbon dioxide

GA : Gestational Age

GDM : Gestational Diabetes Mellitus

IDM : Infant of Diabetic Mother

IDDM : Insulin Dependent Diabetes Mellitus

IPPV : Intermittent Positive Pressure Ventilation

IRDS : Infant Respiratory Distress Syndrome

IVH : Intravenricular Hemorrhage

L/S : Lecithin /Sphingomyelin Ratio

LBC : Lamellar Body Count

LGA : Large for Gestational Age

LMP : Last Menstrual Period

LSCS : Lower Segment Cesarean Section

MG : Multigravida

NEC : Necrotizing Enterocolis

NBD-PC : Fluorescence polarization

PCV : Packed Cell Volume

PG : Primigravida

PGDM : Pregestational Diabetes Mellitus

PI : Phosphatidyl Inositol

PKA : Protein Kinase A

PKC : Protein Kinase C

PVH : Periventricular Hemorrhage

P/V : Ventilation Perfusion Imbalance

P_aCO2 : Partial Pressure of arterial Carbon Dioxide

P_aO2 : Partial Pressure of arterial Oxygen

RDS : Respiratory Distress Syndrome

ROP : Retinopathy Of Prematurity

ROC : Reciever Operating Characteristic

SP-A : Surfactant Protein A

SP-B : Surfactant Protein B

SP-C : Surfactant Protein C

TD_xFLM : Surfactant/Albumin Ratio

THAM : Tris-Hydroxy-Amino-Methane

TTN : Transient Tachypnea of Newborn

TM : Tubular Myelin

WHO : World Health Organization

List of Figures

Fig.	Item	Page
1	Surfactant distribution in the healthy lungs and	16
	in cases of RDS	
3	Pathogensis of surfactant deficiency	18
3	Chest radiographs in a premature infant with	23
	respiratory distress syndrome before and after	
	surfactant treatment	
4	Tests for determining fetal lung maturity	52
5	A diagram showing Type II Pneumocytes	65
6	Signaling Pathway involved in the regulation of	69
	surfactant secretion	
7	Electron Microscopic section of a rat lung	71
	showing the lamellar bodies (LB) and tubular	
	myelin (TM) in the alveolus	
8	Box-Plot Chart showing Difference between	83
	Groups regarding Age	
9	Box-Plot Chart showing Difference between	83
	Groups regarding Parity	
10	Box-Plot Chart showing Difference between	84
	Groups regarding Weight	
11	Box-Plot Chart showing Difference between	84
	Groups regarding BMI	
12	Bar-Chart showing Difference between Groups	85
	regarding Obesity	
13	Pie-Chart showing Type of Diabetes Mellitus in	86
	Women of Group I	
14	Pie-Chart showing Treatment of Diabetes	86
	Mellitus in Women of Group I	
15	Pie-Chart showing Glycemic Control of	87
	Diabetes Mellitus in Women of Group I	
16	Box-Plot Chart showing Difference between	88
	Groups regarding Amniotic Fluid Lamellar	
	Body Count (LBC)	

List of Figures (Cont.)

Fig.	Item	Page
17	Pie-Chart showing Difference between Groups	90
	regarding Neonatal Gender	
18	Box-Plot Chart showing Difference between	90
	Groups regarding Birth Weight	
19	Bar-Chart showing Difference between Groups	91
	regarding Rate of Macrosomia	
20	Box-Plot Chart showing Difference between	91
	Groups regarding 1-min Apgar Score	
21	Bar-Chart showing Difference between Groups	92
	regarding Rate of 1-min Apgar Score< 7	
22	Box-Plot Chart showing Difference between	92
	Groups regarding 5-min Apgar Score	
23	Bar-Chart showing Difference between Groups	93
	regarding Rate of 5-min Apgar Score< 7	
24	Bar-Chart showing Difference between Groups	94
	regarding Rate of TTN	
25	Bar-Chart showing Difference between Groups	94
	regarding Rate of RDS	
26	Bar-Chart showing Difference between Groups	95
	regarding Neonatal Mortality	
27	Box-Plot Chart showing Difference between	97
	Diabetic Women whose Neonates had	
	TTN/RDS and Women who did not regarding	
	Maternal Age	
28	Box-Plot Chart showing Difference between	97
	Diabetic Women whose Neonates had	
	TTN/RDS and Women who did not regarding	
	Parity	_
29	Box-Plot Chart showing Difference between	98
	Diabetic Women whose Neonates had	
	TTN/RDS and Women who did not regarding	
	Maternal Weight	

List of Figures (Cont.)

Fig.	Item	Page
30	Box-Plot Chart showing Difference between	98
	Diabetic Women whose Neonates had	
	TTN/RDS and Women who did not regarding	
	Maternal BMI	
31	Bar-Chart showing Difference between Diabetic	99
	Women whose Neonates had TTN/RDS and	
	Women who did not regarding Obesity	
32	Bar-Chart showing Difference between Diabetic	100
	Women whose Neonates had TTN/RDS and	
	Women who did not regarding Type of	
	Diabetes Mellitus	
33	Bar-Chart showing Difference between Diabetic	101
	Women whose Neonates had TTN/RDS and	
	Women who did not regarding Treatment of	
	Diabetes Mellitus	
34	Bar-Chart showing Difference between Diabetic	101
	Women whose Neonates had TTN/RDS and	
	Women who did not regarding Glycemic	
2.7	Control	100
35	Box-Plot Chart showing Difference between	102
	Diabetic Women whose Neonates had	
	TTN/RDS and Women who did not regarding	
26	Birth Weight Par Chart shawing Difference between Dishetic	102
36	Bar-Chart showing Difference between Diabetic Women whose Neonates had TTN/RDS and	103
37	Women who did not regarding Macrosomia Poy Plot Chart showing Difference between	104
31	Box-Plot Chart showing Difference between Diabetic Women whose Neonates had	104
	TTN/RDS and Women who did not regarding	
	Amniotic Fluid Lamellar Body Count (LBC)	
	Annious Fiuld Lamenal Dody Count (LBC)	

List of Figures (Cont.)

Fig.	Item	Page
38	Box-Plot Chart Difference between Diabetic	105
	Women whose Neonates had TTN and Women	
	whose Neonates had RDS regarding Amniotic	
	Fluid Lamellar Body Count (LBC)	
39	ROC Curve for Amniotic Fluid LBC as	106
	Predictor of Neonatal TTN/RDS	
40	ROC Curve for Amniotic Fluid LBC as	106
	Predictor of Neonatal TTN	
41	ROC Curve for Amniotic Fluid LBC as	107
	Predictor of Neonatal RDS	
42	ROC Curve for Amniotic Fluid LBC as	108
	Predictor of Neonatal Mortality due to RDS	

List of Tables

Table	Item	Page
1	Difference between Groups regarding	82
	Demographic Data	
2	Characteristics of Diabetes Mellitus in	85
	Women of Group I	
3	Difference between Groups regarding Amniotic Fluid Lamellar Body Count (LBC)	87
4	Difference between Groups regarding Neonatal Outcome	89
5	Difference between Groups regarding	93
	Neonatal Respiratory Morbidity and Mortality	
6	Difference between Diabetic Women whose	96
	Neonates had TTN/RDS and Women who	, ,
	did not regarding Demographic Data	
7	Difference between Diabetic Women whose Neonates had TTN/RDS and Women who	100
	did not regarding Characteristics of Diabetes	
	Mellitus	
8	Difference between Diabetic Women whose	102
	Neonates had TTN/RDS and Women who	
	did not regarding Birth Weight	
9	Difference between Diabetic Women whose	103
	Neonates had TTN/RDS and Women who	
	did not regarding Amniotic Fluid Lamellar	
	Body Count (LBC)	
10	Difference between Diabetic Women whose Neonates had TTN and Women whose	104
	Neonates had RDS regarding Amniotic Fluid	
	Lamellar Body Count (LBC)	
	Lamenar Dody Count (LDC)	

List of Tables (Cont.)

Table	Item	Page
11	Validity of Amniotic Fluid LBC as Predictor of Adverse Neonatal Outcome	108
12	Correlation between Amniotic Fluid LBC and Birth Weight and Apgar Scores	109

Introduction

Introduction In the process of lung maturity, the lungs are the last vital organs that need to develop in order to enable life in the extrauterine environment. Despite the development of artificial surfactants and advances in respiratory support, respiratory distress syndrome (RDS) continues to be a major problem in newborns. (Stoll and Kleigman, 2000)

As the successful establishment of adequate lung function at birth is dependent on the maturity of the respiratory system (Stoll and Kleigman, 2000), the ability to accurately predict neonatal lung maturity would be a helpful adjunct in the management of pregnancies when premature delivery is expected or administration of glucocorticoids is needed. (Dubin, 1989)

Although respiratory distress syndrome (RDS) is generally a disease of preterm neonates, it does develop in term newborns, especially in the setting of sepsis or meconium aspiration. It was also found that male infants are more likely to develop RDS than females, and white infants are more frequently and severely affected than black infants. (**Jobe**, **2004**)

Because of the importance of the lung function for survival, perinatal research and care are directed to the examination of its maturity. The accurate antenatal prediction

of fetal lung maturity (FLM) based on results from amniotic fluid samples is of utmost importance in the prevention of neonatal respiratory distress syndrome and its complications. (Jobe, 1990)

Delivery for fetal indications is necessary when the risks to the fetus from a hostile intrauterine environment are greater than the risks of severe neonatal problems, including respiratory distress, even if the fetus is preterm. Amongst the unfavorable intrauterine environment is maternal hyperinsulinemia and insulin resistance occurring in diabetic Hyperinsulinemia delays lung maturation inhibiting surfactant proteins thus predisposing to respiratory distress in the neonate. (Kristensen et al., 2005; DeRoche et al., 2002)

Despite the considerable improvement in neonatal care, the morbidity for respiratory complications such as respiratory distress syndrome (RDS) in the infants born to diabetic mothers is considerable, as is the financial burden of the resulting care. (E.G. Livingston et al., 1995) There has been a long-standing debate regarding the effect of maternal diabetes on FLM. Others have challenged the concept that, gestational age rather than overt diabetes is likely the most significant associated factor with respiratory distress. (Berkowitz et al., 1996; Kjos et al., 1990)
