

SOLAR DESALINATION

A Thesis Submitted to the Faculty of Engineering Ain Shames University for the Fulfillment of the Requirement of M.Sc. Degree In Civil Engineering

Prepared by ENG. ALAA EL-DIN HISHAM MOHAMED NAGUIB ALI

B.Sc. in Civil Engineering, May 2011 Faculty of Engineering – Ain Shams University – Cairo, EGYPT

Supervisors

Prof. Dr. MOHAMED EL HOSSEINY EL NADI,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. NANY ALY HASSAN NASR,

Associate professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. AISHA ZAKI MAGED MOSTAFA,

Assistant professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

SOLAR DESALINATION

A Thesis For The M.Sc. Degree in Civil Engineering (SANITARY & ENVIRONMENTAL ENGINEERING)

by

ENG. ALAA EL-DIN HISHAM MOHAMED NAGUIB ALI

B.Sc. in Civil Engineering, May 2011 Faculty of Engineering – Ain Shams University – Cairo, EGYPT

THESIS APPROVAL

Prof. Dr. Mahmoud Abdel Shafy El Sheikh Professor of Sanitary Engineering & Head of Civil Eng. Dept. Shebin El Kom Faculty of Engineering, Menofiya University Prof. Dr. Tarek Ismail Sabry Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University Prof. Dr. Mohamed El Hosseiny El Nadi Professor of Sanitary & Environmental Engineering & Head of Public Works Dept., Faculty of Engineering, Ain Shams University Ass. Prof. Dr. Nany Aly Hassan Nasr Associate Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University Date: - ---/--/2015

Dedication

This thesis is dedicated to those who contributed to educating, raising and supporting me to be able to accomplish in this picture.

A special dedication to

my supportive parents

and to

My wonderful **Brothers, Sisters and Relatives**

and finally special dedication to

My lovely wife and child

for encouraging me to complete this work and for always being there for me.

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from October 2012 to December 2014.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

> Date: - ---/-- /2015 Signature: - ------

Name: - ALAA EL-DIN HISHAM MOHAMED NAGUIB ALI

ACKNOWLEDGMENTS

First, thanks are all direct to Allah, for blessing this work until it has reached its end, as a part of generous help throughout my life.

It is with immense gratitude that I acknowledge the support and help of **Professor Dr. Mohamed El Hossieny El Nadi**, Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, this thesis wouldn't have been possible unless his great efforts, meticulous revision, scientific guidance and tremendous support.

I am profoundly grateful to **Dr. Nany Aly Hassan Nasr**, Associate Professor of Sanitary Engineering, Faculty of Engineering, Ain Shams University, for her close and kind supervision, constructive criticism, true encouragement and keen interest in the progress and accomplishment of this work. I am thankful for all the time and effort she gave me.

I would like to thank **Dr. Aisha Zaki Maged Mostafa**, Assistant professor of Sanitary Engineering, Faculty of Engineering, Ain Shams University, for her sincere help and guidance, true encouragement and keen interest in the progress and accomplishment of this work. I am thankful for all the time and effort he gave me.

Also, I would like to thank Prof. Dr. Mohamed El Sayed Aly Basiouny, Professor of Sanitary Engineering & Dean of Benha Faculty of Engineering, Benha University, and my god father for his sincere support and help, true encouragement and keen interest in the progress of this work. I am thankful for time and effort he gave me.

Last but not least, sincere thanks to the staff and personnel of Sanitary Engineering Section, Faculty of Engineering, Ain Shams University, especially Tech. Khalid Abdel Latif for facilities, encouragement and cooperation during the preparation of this study.

ABSTRACT

Name: ALAA EL-DIN HISHAM MOHAMED NAGUIB ALI

Title: "SOLAR DESALINATION"

Faculty: Faculty of Engineering, Ain Shams University.

Specialty: Civil Eng., Public Works, Sanitary & Environmental Eng.

Abstract:-

For the shortage of water resources in Egypt and Arab countries, A need to develop low cost technology to deal with seawater as water resource are increased. The objective of this thesis is to study the possibility of producing potable water from seawater using low cost technique depends on concentrated solar rays by mirrors. The study chooses the worst climatic season in Egypt to measure the system capability.

The study erected a pilot plant in Faculty of Eng. pilots open site, ASU designed from acrylic as a low cost long life age and transparent material. The system used 3 concave mirrors and directed to let mirrors receives sunrays and concentrated it on the pilot for the whole sunny period. The measurements for quantities, temperature and TDS for the inlet and outlet waters were made with the measuring of air temperature and sunshine period among the day.

The tests covered three months between autumn and winter to be in the worst climate for the system operation that depends mainly on sun and temperature. The results were good for product quantity and quality in spite of the acrylic use prevent the temperature transfer for its low thermal conductivity which is 20% of glass that affects the product quantity.

The thesis shows that the fresh water quantity is proportional with air temperature and its TDS is between 20-40 ppm even how much the salinity of the influent seawater that ensure the system high efficiency to remove salts. Also, the results show the necessity of use glass instead of acrylic to increase the unit productivity and increase the benefits from the system.

SUPERVISORS

Prof. Dr. Mohamed El Hosseiny El Nadi, Associate Prof. Dr. Nany Aly Hassan Nasr, Assistant Prof. Dr. Aisha Zaki Maged Mostafa.

KEY WORDS

Water Treatment, Seawater Desalination, Renewable Energy Concentrating Solar Rays by Mirrors.

TABLE OF CONTENTS

COVER	Page
APPROVAL COMMITTEE	ii
DEDICATION	iii
STATEMENT	
ACKNOWLEDGMENTS	V
ABSTRACT	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	X
LIST OF TABLES	xii
CHAPTER I: INTRODUCTION	
1-1 BACKGROUND	1
1-2 STUDY OBJECTIVES	3
1-3 SCOPE OF WORK	3
1-3-1 THEORETICAL PART	3 3 3
1-3-2 EXPERIMINTAL PART	3
1-4 THESIS ORGANIZATION	4
CHAPTER II : LITERATURE REVIEW	
2-1 INTRODUCTION	5
2-2 SEA WATER CHARACTERISTICS	5
2-3 METHODS OF DESALINATION	7
2-3-1 THERMAL DESALINATION PROCESSES	8
2-3-1-1 Multi-Stage Flash Distillation	9
2-3-1-2 Multiple Effect Distillation Process	11
2-3-1-3 Vapour Compression	12
2-3-1-4 Solar Desalination	14
2-3-1-4-1 Direct Systems	14
2-3-1-4-2 Indirect Systems	15
2-3-2 MEMBRANE DESALINATION	16
2-3-2-1 Reverse Osmosis	16
2-3-2-2 Electro-Dialysis	18
2-3-3 FREEZING	19
2-3-4 ION EXCHANGE TECHNOLOGIES	20
2-3-4-1 Three-Unit Variation	21
2-3-4-2 Two-Unit Variation	23
2-3-4-3 RDI Process	23
2-4 SOLAR DESALINATION	24
2-4-1 SOLAR ENERGY	25

2-4-2	DESALINATION USING SOLAR POWER	26
2-4-2-1	Direct Systems	26
2-4-2-2	Indirect Systems	28
2-5	DESALINATION USING CONCENTRATED SOLAR	
	RAYS BY MIRRORS	31
2-6	APPLICATIONS AND PROBLEMS	35
	ER III: MATERIALS AND METHODS	
3-1	LOCATION OF STUDY	37
3-2	PROPOSED PILOT	37
3-3	WATER PATH THROUGH THE PILOT	41
3-4	OPERATION PROGRAM	42
3-4-1	ANALATIC MEASURMENTS	43
СНАРТ	ER IV: RESULTS	
4-1	INTRODUCTION	45
4-2	RESULTS	45
4-2-1	RESULTS OF FIRST WEEK	45
4-2-2	RESULTS OF FIRST WEEK RESULTS OF SECOND WEEK	46
4-2-3	RESULTS OF THIRD WEEK	47
4-2-4	RESULTS OF FOURTH WEEK	48
4-2-5	RESULTS OF FIFTH WEEK	49
4-2-6	RESULTS OF SIXTH WEEK	50
4-2-7	RESULTS OF SEVENTH WEEK	51
4-2-8	RESULTS OF EIGHTH WEEK	52
4-2-9	RESULTS OF NINTH WEEK	53
4-2-10	RESULTS OF TENTH WEEK	54
4-2-11	RESULTS OF ELEVENTH WEEK	55
4-2-12	RESULTS OF TWELFTH WEEK	56
4-2-13	RESULTS OF THIRTEENTH WEEK	57
4-3	SUMMARY OF THE STUDY RESULTS	58
CHAPT	ER V: DISCUSSION	
5-1	INTRODUCTION	61
5-2	DISCUSSIONS OF RESULTS	61
5-3	FACTORS AFFECTING PLANT EFFICIENCY	65
5-3-1	EFFECT OF MULTISTORY SERIAL CHANNEL	
	SYSTEM	66
5-3-2	EFFECT ON RAW WATER TEMPERATURE	66
5-3-3	EFFECT OF AIR TEMPERATURE	67
5-3-4	EFFECT OF SUNSHINE PERIOD	67
5-3-5	EFFECT ON TDS	68

CHA	APTER VI: CONCLUSION	
6-1	OVERVIEW	70
6-2	CONCLUSIONS	70
6-3	RECOMMENDATIONS	71
6-4	FURTHER WORK	71
REF.	ERENCESES	72

LIST OF FIGURES

Figure		Page
CHAPTER I :	INTRODUCTION	
Figure (1/1)	Distribution of Earth's Water	1
Figure (1/2)	Conventional Water Resources (BCM)	2
CHAPTER II:	LITERATURE REVIEW	
Figure (2/1)	Desalination Plants around the World	6
Figure (2/2)	Desalination Techniques	8
Figure (2/3)	Distillation Process	9
Figure (2/4)	MSF arrangement	10
Figure (2/5)	Multi-effect distillation	12
Figure (2/6)	Vapour-Compression Evaporation	13
Figure (2/7)	Direct Solar Desalination	15
Figure (2/8)	Indirect Solar Desalination	15
Figure (2/9)	Osmosis and RO processes	17
Figure (2/10)	Movement of ions in the ED process	19
Figure (2/11)	Freeze Desalination	20
Figure (2/12)	Three-Unit Variation Process	22
Figure (2/13)	Two-Unit Variation Process	23
Figure (2/14)	RDI Process	24
Figure (2/15)	Solar Energy Absorped and Reflected	26
Figure (2/16)	Solar Still	27
Figure (2/17)	Solar Collector	29
Figure (2/18)	Solar Still Coupled With a Solar Collector	30
Figure (2/19)	Multi-Effect Solar Still with a Solar Collector	30
Figure (2/20)	Pilot Plant Model	31
Figure (2/21-a)	Used Pilot Plant Front View	32
Figure (2/21-b)	Used Pilot Plant Back View	33
CHAPTER III:	MATERIALS AND METHODS	
Figure (3/1):	Sketch for Proposed System	37
Figure (3/2):	Pilot Plant	38
Figure (3/3):	Solar Collector	38
Figure (3/4):	Foam Sheet	39
Figure (3/5):	Foam Sheet Covering Solar Collector	39
Figure (3/6):	Support of Mirrors on Wooden Frame	40
Figure (3/7):	Dosing Pump	40
Figure (3/8)	Raw Seawater Tank. Brine Tank and Fresh Water Tank	41

Figure (3/9)	Connection and Arrangements between Units	41
Figure (3/10)	Sampling Locations	42
Figure (3/11)	Glass Mercury Thermometer	43
Figure (3/12)	pH Meter	44
Figure (3/13)	Conductivity Meter	44
CHAPTER VI:	RESULTS	
Figure (4/1):	Calculated Flow Rates	58
Figure (4/2):	Measured Temperatures	59
Figure (4/3):	Measured TDS	59
Figure (4/4):	Measured pH Value	60
CHAPTER V	DISCUSSION	
Figure (5/1):	Air Temperature and Fresh Water Flow during the Study	
11gaic (3/1).	Period	62
Figure (5/2):	Air Temperature and Fresh Water Flow during the Tenth,	
	Eleventh and Twelfth Weeks	62
Figure (5/3):	pH Value of Raw Seawater, Fresh water and Brine	63
Figure (5/4):	Comparison between our study Results with acrylic face	
	and Previous studies Results with glass face in the same	- 1
(- (-)	periodical climate	64
Figure (5/5):	Comparison between Feed Raw Water Temperature and	
	the Resulted Brine Temperature	66
Figure (5/6):	Relation between Air Temperature and Fresh Water Flow	
	Rate	67
Figure (5/7):	Relation between Sunshine Period and Fresh Water Flow	
	Rate	68
Figure (5/8):	Relation between Fresh Water Flow and Fresh Water TDS	69
Figure (5/9):	Relation between Raw Water TDS and Fresh Water TDS	
-	during the Study Period	69

LIST OF TABLES

Table		Page
CHAPTER II	I: LITERATURE REVIEW	
Table (2/1)	The Palatability of Water According to Dissolved Salts	
, ,	Concentration	5
Table (2/2)	Classification of Water According to Dissolved Salts	
	Concentration	6
CHAPTER II	II: MATERIALS AND METHODS	
Table (3/1)	Samples Locations	43
CHAPTER I	V: RESULTS	
Table (4/1)	1 st Week Applied Raw Water	45
Table (4/2)	1 st Week Resulted Fresh Water	46
Table (4/3)	1 st Week Resulted Brine	46
Table (4/4)	2 nd Week Applied Raw Water	46
Table (4/5)	2 nd Week Resulted Fresh Water	46
Table (4/6)	2 nd Week Resulted Brine	47
Table (4/7)	3 rd Week Applied Raw Water	47
Table (4/8)	3 rd Week Resulted Fresh Water	47
Table (4/9)	3 rd Week Resulted Brine	47
Table (4/10)	4 th Week Applied Raw Water	48
Table (4/11)	4th Week Resulted Fresh Water	48
Table (4/12)	4 th Week Resulted Brine	48
Table (4/13)	5 th Week Applied Raw Water	49
Table (4/14)	5 th Week Resulted Fresh Water	49
Table (4/15)	5 th Week Resulted Brine	49
Table (4/16)	6 th Week Applied Raw Water	50
Table (4/17)	6 th Week Resulted Fresh Water	50
Table (4/18)	6 th Week Resulted Brine	50
Table (4/19)	7 th Week Applied Raw Water	51
Table (4/20)	7 th Week Resulted Fresh Water	51
Table (4/21)	7 th Week Resulted Brine	51
Table (4/22)	8 th Week Applied Raw Water	52
Table (4/23)	8 th Week Resulted Fresh Water	52
Table (4/24)	8 th Week Resulted Brine	52
Table (4/25)	9 th Week Applied Raw Water	53
Table (4/26)	9 th Week Resulted Fresh Water	53
Table (4/27)	9 th Week Resulted Brine	53
Table $(4/28)$	10 th Week Applied Raw Water	54

Table (4/29)	10 th Week Resulted Fresh Water	54
Table (4/30)	10 th Week Resulted Brine	54
Table (4/31)	11 th Week Applied Raw Water	55
Table (4/32)	11 th Week Resulted Fresh Water	55
Table (4/33)	11 th Week Resulted Brine	55
Table (4/34)	12 th Week Applied Raw Water	56
Table (4/35)	12 th Week Resulted Fresh Water	56
Table (4/36)	12 th Week Resulted Brine	56
Table (4/37)	13 th Week Applied Raw Water	57
Table (4/38)	13 th Week Resulted Fresh Water	57
Table (4/39)	13 th Week Resulted Brine	57

CHAPTER I INTRODUCTION

1-1 BACKGROUND

Without fresh water no society can function. Of all the water in the world a mere 1% is fresh water available for the needs of all plant, animal and human life. Around 97% of water in the world is in the oceans and approximately 2% of water is in ice stored in glaciers and in polar ice. As shown in figure (1/1) [1].

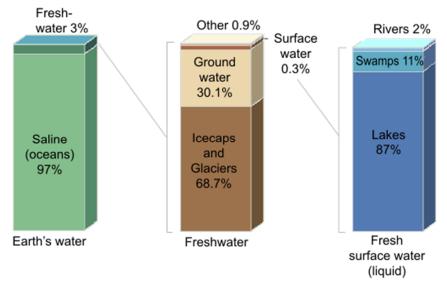


Figure (1/1) Distribution of Earth's Water [1]

Water resources in Egypt are limited to the Nile River, rainfall and flash floods, deep groundwater in the deserts and Sinai, and potential desalination of sea and brackish water. Each resource has its usage limitation, whether these limitations are related to quantity, quality, space, time, or exploitation cost [2].

The Nile River supplies 55.5 BCM per year according to the 1959 agreement with Sudan, but it's a main concern that this amount will drop after the construction of Ethiopian Renaissance Dam. Groundwater in the Western Desert, in the Nubian sandstone aquifer and Sinai supplies 2 BCM per year. Rainfall along the coastal area supplies 1.3 BCM per year.

Groundwater in the Nile valley & delta (cannot be considered a separate source of water) supply about 6.5 BCM per year. The non-conventional water resources such as reuse of agriculture drainage water and reuse of treated sewage water is about 0.3 BCM per year but they cannot be added to Egypt's fresh water resources. Desalination of seawater in Egypt has been given low priority as a water resource because the cost of treatment (construction and operation) is high compared with other sources [2].

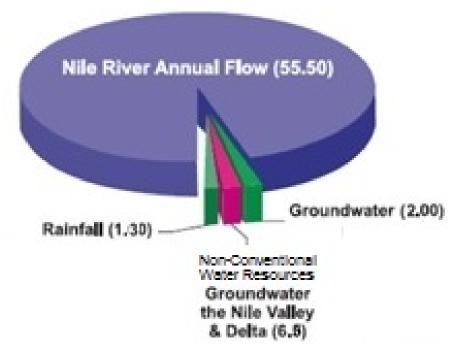


Figure (1/2) Conventional Water Resources (BCM)

Water requirements for different sectors (agricultural, municipal water requirements and industrial) is about 79.5 BCM per year, Egypt suffer a water shortage about 20 BCM per year and by the year 2020 the water requirements is expected to be increased by 20% (about 15 BCM per year) [2]. Egypt's water supply is equivalent to an allocation of 663 cubic meters per capita per year by 2013, below the water poverty line of 1,000 cubic meters per capita a year and predicted the allocation would fall to 582 cubic meters per capita per year by 2025 if action was not taken to reverse the downward trend [3].