

LEARNING-BASED FEATURE SUPER-RESOLUTION FOR LOW-RESOLUTION IMAGE CLASSIFICATION

By

Asaad Musaed Ahmed Anam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Biomedical Engineering and Systems

LEARNING-BASED FEATURE SUPER-RESOLUTION FOR LOW-RESOLUTION IMAGE CLASSIFICATION

By **Asaad Musaed Ahmed Anam**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Biomedical Engineering and Systems

Under the Supervision of

Dr. Ahmed Samir Fahmy

Dr. Muhammad Ali Rushdi

Associate Professor of Biomedical
Engineering
Biomedical Engineering and Systems
Faculty of Engineering, Cairo University

Dr. Muhammad Ali Rushdi

Assistant Professor of Biomedical
Engineering
Biomedical Engineering
Biomedical Engineering and Systems
Faculty of Engineering, Cairo University

LEARNING-BASED FEATURE SUPER-RESOLUTION FOR LOW-RESOLUTION IMAGE CLASSIFICATION

By Asaad Musaed Ahmed Anam

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in Biomedical Engineering and Systems

Approved by the Examining Committee:

Dr. Ahmed Samir Fahmy

Thesis Main Advisor

Associate Professor of Biomedical Engineering Faculty of Engineering, Cairo University

Prof. Dr. Ahmed Hisham Kandil

Internal Examiner

Professor of Biomedical Engineering Faculty of Engineering, Cairo University

Prof. Dr. Khaled Mostafa El Sayed

External Examiner

Professor of Information Technology Faculty of Computers and Information, Cairo University Engineer's Name: Asaad Musaed Ahmad Anam

Date of Birth: 12 / 5 / 1987 **Nationality:** Yemeni

E-mail: Eng.asaadanam@yahoo.com

Phone: 01007361066

Address: 4 Al-Shabab city 2, Faisal, Giza

Registration Date: 1/3/2013 **Awarding Date:**/ 2017 **Degree:** Master of Science

Department: Biomedical Engineering and Systems

Supervisors:

Dr. Ahmed Samir Fahmy Dr. Muhammad Ali Rushdi

Examiners:

Dr. Ahmed Samir Fahmy (Thesis Main Advisor)
Associate Professor of Biomedical Engineering and Systems,
Faculty of Engineering, Cairo University

Prof. Dr. Ahmed Hisham Kandil (Internal Examiner)

Professor of Biomedical Engineering and Systems,

Faculty of Engineering, Cairo University

Prof. Dr. Khaled Mostafa El Sayed (External examiner)

Professor of Information Technology

Faculty of Computers and Information, Cairo University

Title of Thesis:

Learning-based Feature Super-resolution for Low-resolution Image Classification

Key Words:

Image resolution; feature learning; partial least-square regression; coupled dictionary learning; material classification.

Summary:

The classification of images from their visual texture has many applications ranging from medical diagnosis applications to image retrieval and object recognition. As image resolution determines the amount of details an image holds, it plays an important role when using digital images for classification tasks. The problem we address in this thesis is one of automatically classifying textural images with low resolution conditions since high resolution images are not always available. In this work, we propose learning-based approaches to infer high-resolution features from low-resolution features extracted from low-resolution images. Applying these learned maps is equivalent to super-resolution (SR) in the feature domain. Two different applications are studied in this work. Experimental and statistical evaluations show significant improvement in classification performance due to applying the proposed techniques in comparison with direct classification in the low-resolution space.

Acknowledgments

Thanks to God first and foremost for blessing my whole life and guiding me for seeking knowledge and completing this thesis. I would like to express my gratitude to my adviser, **Dr. Muhammad Ali Rushdi** for setting the broad lines of this work and challenging my potential to innovate throughout my academic career. Without his invaluable assistance, support and guidance, this thesis would not have been possible.

I am also genuinely blessed to have **Associate Prof. Ahmed Samir Fahmy** as a main adviser. Many thanks for his support and help through the duration of this work.

My deepest gratitude is also to my **family** and **friends**. Without their encouragement, I would not have gone this far.

Dedication

This thesis is dedicated to my brother *Ghamdan Anam* for his continued support and encouragement.

Table of Contents

ACKNOW	VLEDGMENTS	I
DEDICAT	TION	II
TABLE O	F CONTENTS	III
LIST OF	ΓABLES	v
LIST OF I	FIGURES	VII
LIST OF	ABBREVIATIONS	XI
	R 1 : INTRODUCTION	
1.1.	OVERVIEW OF THE THESIS	
1.2.	THESIS OBJECTIVE	
1.3.	OUTLINE OF THESIS	3
CHAPTE	R 2 : BACKGROUND AND METHODS	5
2.1.	IMAGE CLASSIFICATION	5
2.2.	LOW-RESOLUTION IMAGE CLASSIFICATION: LIMITATIONS AND SOL	UTIONS 6
2.3.	FEATURE SUPER-RESOLUTION USING LEARNING APPROACHES	7
2.4.	LITERATURE REVIEW	9
2.5.	NOTATIONS	11
2.6.	PARTIAL LEAST SQUARES (PLS) FOR FEATURE LEARNING	
2.6.1.	Description of PLS	
2.6.2.	Learning PLS Bases	12
2.7.	COUPLED DICTIONARY LEARNING (CDL)	13
2.7.1.	Problem Formulation	13
2.7.2.	Optimization	15
2.7.2.		
2.7.2. 2.7.2.	-1 & x y	
2.7.3.	Cross-Domain Image Recognition	
CHAPTEI	R 3 : HEP2 CELL IMAGE CLASSIFICATION	
	MEDICAL CONTEXT	
3.1.		
3.2.	HEP2 DATASETS AND COMPETITIONS	
3.2.1. 3.2.2.	SNPHEp-2 Dataset	
3.2.2.	MIVIA HEp-2 Dataset HEp2 Cell Classification Problems	
3.3. 3.4.	LITERATURE REVIEW	
3.4.	LOW-RESOLUTION HEP2 CELL CLASSIFICATION	
3.5.1.	Training the Mapping Algorithms	
3.5.1.		

3.5.	, , , , , , , , , , , , , , , , , , ,	
3.5.	1 8	
	1.4. Coupled Dictionary Learning	
3.5.2. 3.5.	r r	
3.5. 3.5.		
	2.3. Evaluation Protocol	
3.5.		
3.6.	HEP2 CELL CLASSIFICATION RESULTS AND DISCUSSIONS	33
3.6.1.	Statistical Significance Testing	35
СНАРТІ	ER 4: TEXTURE AND MATERIAL CLASSIFICATION	37
4.1.	TEXTURE CLASSIFICATION	37
4.2.	Previous Work	
4.3.	DATASETS FOR TEXTURE AND MATERIAL CATEGORIZATION	
4.3.1.		
4.3.2.		
4.4.	CLASSIFICATION OF UNSEEN TEXTURE SCALES	
4.4.1.		
4.4.2.	1 0	
4.4.3.	• •	
4.4.4.		
4.4.5.		
	5.1. Frist Scenario: Lacking Scale Information for Training	
4.4.	5.2. Second Scenario: Scale Variation Information Is Available for Training	
	5.3. Super-Resolution in the Feature Domain for Low-Resolution Image Classification	
	ancement	
	4.4.5.3.1. Partial Least Squares	
4.5.	RESULTS AND DISCUSSION	
СНАРТЬ	ER 5: CONCLUSION & FUTURE WORK	71
5.1.	Conclusion	71
5.2.	FUTURE WORK	71
A DDENIE	DIX I: ROTATION INVARIANT CO-OCCURRENCE AMONG LO	CAT
	PATTERNS (RIC-LBP)	
	OIX II – MULTI-SCALE CO-OCCURRENCE LBP (MCLBP)	
APPEND	DIX III – SUPPORT VECTOR MACHINES (SVM)	83
	OIX IV- NUMERICAL OPTIMIZATION FOR COUPLINARY LEARNING	
	INCES	87

List of Tables

Table 3.1: HEp-2 classification rates across different datasets and methods33
Table 3.2: Confusion matrix of cell classification of MIVIA HEp-2 (HR). FS: fine speckled; CS: coarse speckled; Ho: homogeneous; Nu: nucleolar; Ce: centromere34
Table 3.3: Confusion matrix of cell classification of SNPHEp-2 (LR). FS: fine speckled; CS: coarse speckled; Ho: homogeneous; Nu: nucleolar; Ce: centromere34
Table 3.4: Confusion matrix of cell classification of SNPHEp-2 (LR+PLS). FS: fine speckled; CS: coarse speckled; Ho: homogeneous; Nu: nucleolar; Ce: centromere34
Table 3.5: Confusion matrix of cell classification of SNPHEp-2 (LR+CDL). FS: fine speckled; CS: coarse speckled; Ho: homogeneous; Nu: nucleolar; Ce: centromere35
Table 3.6: Statistical significance testing results. 36
Table 4.1: The scales present in the KTH-TIPS2 database. 43
Table 4.2: Results of the SR approaches with RIC-LBP features. The means and standard deviations of 10 repetitions are reported. 57
Table 4.3: Results of the PLS approach with MCLBP features. The means and standard deviations of 10 repetitions are reported. 57
Table 4.4: Confusion matrices of Scale # 2 of the two scenarios and the proposed PLS mapping approach on the RIC-LBP features. Al: aluminium foil; Bb: brown bread; Cd: corduroy; Cr: cork; Ct: cotton; Ck: cracker; Le: lettuce leaf; Li: linen; Wb: white bread; Wd: wood; Wl: wool
Table 4.5: Confusion matrices of Scale # 3 of the two scenarios and the proposed PLS approach on the RIC-LBP features. Al: aluminium foil; Bb: brown bread; Cd: corduroy; Cr: cork; Ct: cotton; Ck: cracker; Le: lettuce leaf; Li: linen; Wb: white bread; Wd: wood; Wl: wool
Table 4.6: Confusion matrices of Scale # 9 of the two scenarios and the proposed PLS approach on the RIC-LBP features. Al: aluminium foil; Bb: brown bread; Cd: corduroy; Cr: cork; Ct: cotton; Ck: cracker; Le: lettuce leaf; Li: linen; Wb: white bread; Wd: wood; Wl: wool
Table 4.7: Confusion matrices of Scale # 10 of the two scenarios and the proposed PLS approach on the RIC-LBP features. Al: aluminium foil; Bb: brown bread; Cd: corduroy; Cr: cork; Ct: cotton; Ck: cracker; Le: lettuce leaf; Li: linen; Wb: white bread; Wd: wood; Wl: wool
Table 4.8: Confusion matrices of Scale # 2 of the two scenarios and the proposed CDL approach on the RIC-LBP features. Al: aluminium foil; Bb: brown bread; Cd: corduroy;

Cr: cork; Ct: cotton; Ck: cracker; Le: lettuce leaf; Li: linen; Wb: white bread; Wd: wood; Wl: wool
Table 4.9: Confusion matrices of Scale # 3 of the two scenarios and the proposed CDL approach on the RIC-LBP features. Al: aluminium foil; Bb: brown bread; Cd: corduroy Cr: cork; Ct: cotton; Ck: cracker; Le: lettuce leaf; Li: linen; Wb: white bread; Wd: wood; Wl: wool
Table 4.10: Confusion matrices of Scale # 9 of the two scenarios and the proposed CDL approach on the RIC-LBP features. Al: aluminium foil; Bb: brown bread; Cd: corduroy; Cr: cork; Ct: cotton; Ck: cracker; Le: lettuce leaf; Li: linen; Wb: white bread; Wd: wood; Wl: wool
Table 4.11: Confusion matrices of Scale # 10 of the two scenarios and the proposed CDL approach on the RIC-LBP features. Al: aluminium foil; Bb: brown bread; Cd: corduroy; Cr: cork; Ct: cotton; Ck: cracker; Le: lettuce leaf; Li: linen; Wb: white bread; Wd: wood; Wl: wool

List of Figures

Figure 2.1: Both pictures have same dimensions which are of 227× 222 pixels. The picture on the left side has more spatial resolution or it is clearer than the picture on the right side.
Figure 2.2: Super-resolution in the spatial domain as a pre-processing stage before classification
Figure 2.3: The basic overview of the proposed cross-domain image classification methods. W_x and W_y are the projection matrices learned by the algorithm and used to project the cross-domain features to the latent space.
Figure 3.1: An example of some autoimmune diseases, images from right to left for Systemic Lupus Erythematosus, Sjorgren's syndrome, and Rheumatoid Arthritis, respectively
Figure 3.2: The three intensity classes of IIF images.
Figure 3.3: Well image of the 'speckled' class of HEp-2 cells with some mitotic cells
Figure 3.4: Example of HEp-2 cells with different staining patterns21
Figure 3.5: Example of HEp-2 well images with different staining patterns22
Figure 3.6: Example of SNPHEp-2 dataset images
Figure 3.7: Example of the MIVIA dataset images
Figure 3.8: Examples of HEp-2 cell pattern images. Labels of them are: (a) fine speckled, (b) homogeneous, (c) and (d) cytoplasmatic, (e) and (f) coarse speckled, (g) nucleolar, (h) centromere. (a) and (b) look similar but they are from different classes, (c) and (d) look different but they share the same class label, (e) and (f) look the same and share the same label but have illumination and contrast variations
Figure 3.9: A block diagram of the proposed approaches. Coupled HR and LR features from a HR HEp-2 dataset are extracted and used within a mapping algorithm framework to learn the feature-domain super-resolution mapping. Then, the learned mapping is applied to the image features of the LR HEp-2 dataset. The inferred HR features are thus used to train an SVM classifier for the LR HEp-2 dataset
Figure 3.10: Example of intensity variations
Figure 3.11: Examples of the RIC-LBP feature. (a), (b) are a homogeneous cell and its RIC-LBP feature vector histogram respectively, (c), (d) are a coarse speckled cell and its RIC-LBP feature vector histogram

Figure 3.12: Regressor and responces variances explained by 30 PLS bases31
Figure 3.13: Accuracy rates versus number of PCA coefficients. The optimal number of PLS bases is 30
Figure 4.1: Three images of white bread taken from the CUReT database demonstrating the variation of appearance of a 3D texture as the pose and illumination conditions change.
Figure 4.2: Example of appearance variation with different scales
Figure 4.3: Example of materials of the KTH-TIPS database
Figure 4.4: Full-size images depicting the variation of scale present in the KTH-TIPS database
Figure 4.5: The variation of pose and illumination present in the KTH-TIPS database. In each row, the pose is constant, whereas in each column the illumination is the same (frontal, side, or top illumination)
Figure 4.6: Example of variations within some category of the new KTH-TIPS2 database. Each row shows one example image from each of four samples of some categories. In addition, each sample was imaged under varying pose, illumination and scale conditions
Figure 4.7: Full-size images depicting the variation of scale present in the KTH-TIPS2 database
Figure 4.8: Block diagram of rearranging the KTH-TIPS2 database based on scales number
Figure 4.9: Baseline experiment block diagram
Figure 4.10: Accuracy rates of the baseline experiment. Scale#6 achieves the highest accuracy rate
Figure 4.11: Example of the effect of scale on image resolution for the wool material.
Figure 4.12: Block diagram of the experiment of Scenario 1. In this experiment the model is trained only by Scale#6 (optimal scale) and tested by each scale individually. While Scale#6 was used in training, we used the other half of Scale#6 in the training process of the mapping set for test Scale#6
Figure 4.13: Results of Scenario1 show that medium scales achieve the highest accuracy rates while the terminal scales perform worse
Figure 4.14: Block diagram of the Scenario2 experiment. In this experiment, half of the data is used for training and the other half for testing
Figure 4.15: Results of the pure learning approach 52

Figure 4.16: The basic overview of the proposed method. W _{LS} , W _{MS} , and W _{SS} are projection matrices learned using mapping algorithms on Small Scales (SS) to Medium Scales (MS), and Large Scales (LS) to Medium Scales (MS)
Figure 4.17: Block diagram of our approaches. The three small scales and the three large scales are used to learn the mapping to the medium scales using half of the data. Then the approaches were evaluated by the other half of each scale individually as done in previous experiments
Figure 4.18: Results of the PLS approach with RIC-LBP features compared with the results of Scenario1 and 2. The means and standard deviations of 10 repetitions are plotted
Figure 4.19: Results of the PLS approach with MCLBP features compared with the results of Scenario1 and 2. The means and standard deviations of 10 repetitions are plotted
Figure 4.20: Results of the CDL approach with RIC-LBP features compared with the results of Scenario1 and 2. The means and standard deviations of 10 repetitions are plotted.
Figure 4.21: Comparing all approaches over all scales
Figure 4.22: Effect of sample size on training the mapping approach (PLS with RIC-LBP features)
Figure 4.23: Effect of the number of scales used in learning the mapping on the classification performance
Figure I.1: The workflow to obtain LBP from a local region. In this example, the intensity of the center pixel is 5 and those of its neighboring pixels are 2, 4, 7 and 9. Thus, the binary pattern is " 0011 " and LBP(r) = 3
Figure I.2: Configuration of an LBP pair74
Figure I.3: An example of the rotation equivalence class. The same label is attached to these LBP pairs
Figure I.4: An example of generating RIC-LBP. (a) Example image. (b) LBP pairs of the example image. (c) Labeling of the each LBP pair using Eq.(I.4). (d) Re-labeling of each LBP pair by applying the mapping table M. (e) RIC-LBP histogram
Figure I.5: Process flow of RIC-LBP. (a) Input LBP image. (b) Histogram of $P\theta(r, \Delta r\theta)$. (c) Histogram of $P\theta$ RI(r)
Figure II.1: An illustration of LBP and multi-scale LBP. Compared with LBP, LBPs in multiple scales jointly characterize stronger local structures79
Figure II.2: An illustration of two groups of the MCLBP. Each row denotes one group. When the image rotates, one co-pattern will only turn into another one in the same group.

Figure II.3: An illustration of how to construct 443 groups of MCLBP. (a). dividing the two co-occurrence into "inner scale" and "outer scale" (b). All 256 LBP patterns can be divided into "000000000," "111111111," 56 other uniform patterns and one non-uniform pattern. (c). The way to construct 443 groups: When the patterns in "inner scale" and "outer scale" both belong to the uniform patterns, they form $56 \times 56 \div 8 = 392$ groups.

List of Abbreviations

ANAs Antinuclear Autoantibodies

CAD Computer-Aided Diagnosis Systems

CCA Canonical Correlation Analysis

CDC Center for Disease Control and Prevention in Atlanta,

Georgia, USA

CDL Coupled Dictionary Learning

COALBP Co-occurrence of Adjacent Local Binary Patterns
COURD TO COLUMBIA University Reflection and Transmission

CUReT Database

GRI Globally Rotation Invariant

HEp-2 Human Epithelium Larynx Carcinoma (HEp-2)

Substrate

HR High-Resolution

ICIP International Conference on Image Processing

ICPR International Conference on Pattern Recognition

IIF Indirect Immunofluorescence Test

KTH-TIPS Royal Institute of Technology university Textures

under varying Illumination, Pose and Scale dataset

LR low-Resolution

LS Large Scales

MCLBP Multi-scale Co-occurrence Local Binary Pattern

MS Medium Scales

NIPALS Non-linear Iterative Partial Least Squares

PLS Partial Least Squares Regression

QCQP Quadratically Constrained Quadratic Program

RBF Radial-Basis Function

RIC-LBP Rotation Invariant Co-occurrence among Local Binary

Patterns

SR Super-Resolution

SS Small Scales

SVM Support Vector Machine Classifier