

Biochemical Studies on Recombinant Interferon Gamma Produced in E. coli

Ph.D. thesis

Submitted to Faculty of Science Ain Shams University

$\mathcal{B}y$

Hend Okasha Ahmed Ali

M.Sc. in Biochemistry (2011) Biochemistry and Molecular Biology Department Theodor Bilharz Research Institute

Supervisors

Prof. Dr. Magdy Mahmoud Mohamed

Professor of Biochemistry Faculty of Science Ain Shams University

Prof. Dr. Mohamed Ali Saber

Professor of Biochemistry Biochemistry and Molecular Biology Department Theodor Bilharz Research Institute

Prof. Dr. Mahmoud Hassan Romeih

Head of Biochemistry and Molecular Biology and Medicinal Chemistry Departments Theodor Bilharz Research Institute

<u>APPROVAL SHEET</u>

Biochemical Studies on Recombinant Interferon Gamma Produced in E.coli

A Ph.D. thesis
Submitted by

Hend Okasha Ahmed Ali

M.Sc. Biochemistry and Molecular Biology Department Theodor bilharz Research Institute

Thesis Supervisors

Prof. Dr. Magdy Mahmoud Mohamed

Professor of Biochemistry-Biochemistry Department Faculty of Science- Ain shams University

Prof. Dr. Mohamed Ali Saber

Professor of Biochemistry-Biochemistry and Molecular Biology Department Theodor Bilharz Research Institute

Prof. Dr. Mahmoud Hassan Romeih

Head of Biochemistry and Molecular Biology and Medicinal Chemistry Departments Theodor Bilharz Research Institute

Examination Committee

Prof. Dr. Nabela Anwar El-Saeed El-Sheikh

Professor of Immunology-Faculty of Medicine-Al-Azhar University

Prof. Dr. Reda Mohamed Rashad Ramzy

Professor of Immunology and Parasitology-National Nutrition Institute

Prof. Dr. Magdy Mahmoud Mohamed

Professor of Biochemistry-Biochemistry Department Faculty of Science- Ain shams University

Prof. Dr. Mohamed Ali Saber

Professor of Biochemistry-Biochemistry and Molecular Biology Department Theodor Bilharz Research Institute

Date of Examination: / /

Declaration

I declare that this thesis has been composed by myself and that work of which it is a record has been done by myself. It has not been submitted for a degree at this or any other university.

Hend Okasha Ahmed Ali

TO SOULS OF MY FATHER, MY UNCLE, AND MY DEAR GRAND MOTHER

TO MY GREAT MOTHER

TO WHOM I OWED MY DEEPEST GRATITUDE

MY SISTER

MY FRIENDS

MY DEAR HUSBAND

MY LOVELY DAUGHTER

"MARIAM"

&

MY SWEET HEART SON
"YASEEN"

CONTENTS

Subject	Page
ACKNOWLEDGEMENT	i
ABSTRACT	ii
LIST OF ABBREVIATIONS	iii
LIST OF FIGURES	viii
LIST OF TABLES	xi
INTRODUCTION	1
AIM OF THE WORK	5
CHAPTER I	
LITERATURE REVIEW	6
I-Role of IFN-γ in the immune system	7
II-Clinical use of human IFN-γ	11
III-hIFN-γ protein overview	13
IV-Protein secondary structure	17
V-Engineering of therapeutic protein production in	
Escherichia coli	25

VI-In vitro protein refolding	41
VII-Protein purification using chromatography	46
VIII-Protein biological activity	55
CHAPTER II	
MATERIALS	59
METHODS	64
I-Factors affecting induction of rhIFN-γ expression in	
culture media	64
II-Batch fermentation	69
III-Inclusion bodies purification	72
IV-Refolding by rapid dilution of denatured rhIFN-γ	76
V-Exchanging buffer by diafiltration	78
VI-Purification of recombinant hIFN-γ by liquid	
chromatography (anion exchange)	78
VII-Immunodetection of expressed recombinant hIFN-γ	81
VIII-rhIFN-γ bioactivity assay	83

CHAPTER III

RESULTS	90
CHAPTER IV	
DISCUSSION	117
SUMMERY AND CONCLUSION	133
REFERENCES	138
ARABIC SUMMERY	158
ARABIC ABSTRACT	

ACKNOWLEDGEMENT

"First and foremost, thanks are due to Allah, the beneficent and merciful"

I wish to express my thanks and gratitude to *Prof. Dr. Magdy Mahmoud Mohamed*, Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, for his kind supervision, moral support, instructive guidance and kind advice.

I am greatly indebted to *Prof. Dr. Mohamed Ali Saber*, Professor of Biochemistry, Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, for suggestion of the point of research and his kind supervision, his tremendous effort, and creative guidance. His intelligent remarks motivated me a lot to finish up this work. I owe my deepest thanks for his tutorial support in revision of all details of this thesis and his supervision throughout this work.

My deepest thanks and appreciation to *Prof. Dr. Mahmoud Hassan Romeih*, head of Biochemistry and Molecular Biology and Medicinal chemistry Departments, Theodor Bilharz Research Institute, for his strong support, supervision and invaluable assistance in revision of this thesis.

This work was supported by Science and Technology Development Fund (STDF), the Ministry of Scientific Research in Egypt (Project No. 2D/14) and Theodor Bilharz Research Institute Fund (Project No. 16/K)

I would like to thank the Head and members of Biochemistry and Molecular Biology Lab, Theodor Bilharz Research Institute for their assistance and support throughout the whole work.

Hend Okasha

<u>ABSTRACT</u>

Production of therapeutic proteins in prokaryotic system, Escherichia coli (E.coli); has been recognized as an effective for production of recombinant human stage interferon gamma (rhIFN-γ). Modification of rhIFN-γ expression is a line that can be positively employed for increasing the vield of production through optimization of induction conditions in shaker flasks to be applied onto batch culture of recombinant E. coli. Hence, in this conditions for the over-production of rhIFN-γ induction including type of media, pH, type and amount of inducer were optimized. The factors considered for optimized conditions of the recombinant E.coli were the use of growth medium LB, neutral pH7 and the inducer (lactose) at final concentration 2mM. These factors found to be useful in batch process development. The cell density was reached to 7gm/L wet cell weight after 12h of batch fermentation.

Commonly, the recombinant proteins were produced in E. coli as insoluble aggregates called inclusion bodies (IBs). A method for purification and refolding of rhIFN-y from IBs has been designated. It includes solubilization of IBs guanidinium hydrochloride; refolding of rhIFN-y by rapid dilution method; and protein purification by Hitrap Q XL strong anion chromatography. The rhIFN-y obtained has been immunogenicity characterized bv against the hIFN-γ antibodies. The specific activity of purified rhIFN-y was 1.87 x 10^7 IU/mg compared to standard rhIFN- γ via new MxA reporter gene assav which depends on identifying mRNA level using real time PCR. The rhIFN-γ increases expression of the MxA gene product in direct relation to the dose of rhIFN-y in IU.

LIST OF ABBREVIATIONS

a.a	Amino acid
Ab	Antibody
AC	Affinity chromatography
Amp	Ampicillin
APCs	Antigen presenting cells
Arg	Arginine
Asp	Aspartic acid
BCGF	B-cell growth factor
BCIP	5-bromo-4-chloro-3-indolyl phosphate
bp	Base pair
BSA	Bovine serum albumin
cDNA	Complementary deoxyribonucleic acid
CGD	Chronic granulomatous disease
Cham	Chloramphenicol
СРЕ	Cytopathic effect
СРЕ	Cytopathic effect inhibition assay
Ct	Cycle threshold

DF	Dilution factor
DNA	Deoxribonucleic acid
dNTP	Deoxy nucleotide tri-phosphate
DTT	Dithiothritol
E.coli	Escherichia coli
EDTA	Ethyline diamine tetraacetate
EIA	enzyme immunoassay
FBSA	Fetal bovine serum albumin
FDA	Food and drug administration
FPLC	Fast protein liquid chromatography
GdmCl	Guanidinium hydrochloride
Gln	Glutamine
Glu	Glutamic acid
Gly	Glycine
GuSCN	Guanidinium thiocyanate
h	Hour
HIC	Hydrophobic interaction chromatography
HIV	Human immunodeficiency virus
IBs	Inclusion bodies
IEC	Ion exchange chromatography
IFN-α	Interferon alpha
IFN-β	Interferon beta

IFN-τ	Interferon tau
IFN-ω	Interferon omega
IgG	Immunoglobulin G
IL	Interleukin
IPTG	Isopropylthio -D-galactoside
ISG	Interferon stimulated gene
IU	International unit
JAK	Janus kinase
kDa	Kilo-dalton
lac	Lactose utilization operon
LB	Luria-Bertani medium
medium	Luria Bertain mediani
Leu	Leucine
Lys	Lysine
mAU	Milli absorbance unit
MCS	Multiple cloning site
MHC	Major histocompatibility complex
min	minute
MMLV-RT	moloney murine leukemia virus reverse
	transcriptase
mRNA	Messenger Ribonucleic Acid
mSc/cm	Milli Siemens per centimeter

Mwt	Molecular weight
MWCO	Molecular weight cutoff
MxA	Myxovirus resistance protein A
NBT	Nito blue tetrazoliium
NK	Natural killers
OAS1	2'-5'-oligoadenylate synthetase1
OD	Optical density
PAGE	Polyacrylamide gel electrophoresis
PBMCs	Peripheral blood mononuclear cells
PCR	Polymerase chain reaction
PGK	3-phosphoglycerate kinase
	promoter
pI	Protein isoelectic point
PKR	Protein kinase RNA activated
PMN	Polymorphonuclear leukocytes
PMSF	Phenyl methyl sulfoxide
pSS	Primary Sjögren's syndrome
PTM	Post transitional modification
qPCR	Quantitative polymerase chain reaction
RBS	Ribosomal binding site
rhIFN-γ	Recombinant human interferon gamma
RNA	Ribonucleic acid

RNase L	Ribonuclease L
RPC	Reversed phase chromatography
rpm	Round per minute
RPMI	Roswell park Memorial institute
SB	Super broth
SDS	Sodium dodecyl sulfate
SEA	Staphylococcus enterotoxin A
SEB	Staphylococcus enterotoxin B
SEC	Size exclusion chromatography
SOB	Super optimal both
STAT	signal transducer and activator of
	transcription
ТВ	Terrific broth
TEMED	N, N, N`, N` –tetra-methylenediamine
Th	T helper cell
TNF	Tumor necrosis factor
tRNA	Transfer Ribonucleic Acid
TY	Tryptone yeast extract media
vvm	Vessel volume per minute
WCW	Wet cell weight
WHO	world health organization

LIST OF FIGURES

Figure		Page
number		
Figure (1)	Cellular effect of IFN-γ in the immune system	7
Figure (2)	Amino acid sequence of hIFN-γ, the underlined sequence represents the signal peptide	14
Figure (3)	hIFN-γ glycoprotein structure	16
Figure (4)	Protein folding prediction	19
Figure (5)	Types of posttransitional modification (PTM)	20
Figure (6)	Protein proteolytic cleavage	22
Figure (7)	Disulfide bond	23
Figure (8)	Protein glycosylation	24
Figure (9)	E. coli cell filled with inclusion bodies	26
Figure (10)	The expression vector pET15-b (novagen)	29
Figure (11)	pET-15b cloning and expression region	30
Figure (12)	Effect of lactose and IPTG on Lac operon for protein expression	34
Figure (13)	French press homogenizer	36
Figure (14)	A general schematic diagram of fermentation process	38
Figure (15)	Characteristic growth curve showing lag, log (exponential), stationary and death (decline) phases	39