

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

BEHAVIOR OF RAFT ON FULL AND PARTIAL DISPLACEMENT PILES

BY

MOHAMED HASSANIEN RABIE

A Thesis Submitted to the Faculty of Engineering, Cairo University For the Fulfillment of the Requirement for the Degree of **DOCTOR OF PHYLOSOPHY** Geotechnical Engineering

Under the Supervision

Dr. ABDELSALAM M. SALEM Prof. of Geotechnical Engineering

Faculty of Engineering -Cairo University

Dr. ASHRAF EL-ASHAAL

Assoc. Prof. Of Geotechnical Engineering National Water Research Center-Ministry

of Water Resources and Irrigation

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT May 2001

•

BEHAVIOR OF RAFT ON FULL AND PARTIAL DISPLACEMENT PILES

BY

MOHAMED HASSANIEN RABIE

A Thesis Submitted to the
Faculty of Engineering, Cairo University
For the Fulfillment of the
Requirement for the Degree of
DOCTOR OF PHYLOSOPHY

in Geotechnical Engineering

Approved by

Examining Committee

Prof. Dr. Magda M. Abdel Rahman

77/5/2001

Prof. Dr. Mostafa K. EL-Ghamrawy

Prof. Dr. Abdelsalam M. Salem

Y.1 AbeltiA7-

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT May 2001

Table of Contents

List of Tables	V
List of Figures	vi
ACKNOWLEDGEMENT	xii
CHAPTER 1	
INTRODUCTION	
1.1. GENERAL	1
1.2. OBJECTIVES:	3
1.3. PROCEDURE:	4
CHAPTER 2	
LITERATURE REVIEW	
2.1. INTRODUCTION:	5
2.2. ULTIMATE LOADS ON SINGLE DRIVEN	7
PILES IN COHESIONLESS SOILS	
2.2.1 Method Based on Standard Penetration Test	7
2.2.2 Methods Based on Static Cone Penetration	11
Test	15
2.2.3 Time Effects	15
2.3 ULTIMATE LOADS ON SINGLE DRIVEN CAST-	13
IN-PLACE PILES IN COHESIONLESS SOIL	15
2.4 ULTIMATE LOADS ON BORED PILES IN	15
COHESIONLESS SOILS	16
2.5 ULTIMATE LOADS ON PILES DRIVEN INTO	
COHESIVE SOILS 2.5.1 Skin Friction on Pile Shaft	16
2.5.1 Skin Friction on File Shart 2.5.2 Ultimate Carrying Capacity	20
2.5.2 Offinate Carrying Capacity 2.6 BORED AND CAST-IN-PLACE PILES IN	21
COHESIVE SOILS	
2.6.1 Base Resistance and Skin Friction	21
2.6.2 Large Diameter Bored Piles	21
2.7. AUGER PILES OF THE DISPLACEMENT TYPE	25
2.8 CARRYING CAPACITY OF PILE GROUPS	29
2.8.1 The Behavior of Pile Groups	29
2.8.2 The Behavior of Piles and Pile Groups under	31
Load	
2.8.3 Definition of Failure Load on Piles	32

2.8.4 Pile Groups in Cohesionless Soils	33	
2.8.5 Pile Groups in Cohesive Soils	34	
2.8.6 Ground Heave and Re-Consolidation	35 38	
2.9 BEHAVIOR OF PILE -SOIL-CAP SYSTEMS		
2.9.1 Arrangement and Spacing of Pile in The Group	40	
2.9.2 Pile Cap or Raft Thickness 2.9.3 Case of Loading	41 42	
2.10 PILE – RAFT FOUNDATION FACTORS	44	
AFFECTING THE SOIL-STRUCTURE	e e	
INTERACTION OF PILED / RAFT FOUNDATION.		
2.10.1 Piled Raft Embedded in A Homogeneous	45	
Elastic Half Space		
2.10.2 Piled Raft Embedded in A Finite Elastic	46	
Half Space:		
2.10.3 Effect of Raft Stiffness:	48	
2.10.4 Effect of A Finite Half Space:	52	
CHAPTER 3		
EVALUATION AND ANALYSIS OF FIELD TESTS		
3.1. INTRODUCTION	60	
3.2 FIELD EXPLORATION AND TESTING	60	
PROGRAM		
3.2.1 Scope of Field Exploration Program	60	
3.3 LABORATORY TESTINSG PROGRAM	61	
3.4 SOIL STRATIGRAPHY	61	
3.5 FIELD WORK	62	
3.5.1 Pile Load Test for a Single Vibro Pile under	62	
the Tower		
3.5.2 Pile Load Test for Single Presso Pile under	65	
the Tower		

3.5.2.1 Analysis of single Presso piles	65
3.6 INTERACTION RESPONSE BETWEEN FULLY AND SEMI DISPLACEMENT PILES	67
3.6.1 Testing Capacities	68
3.6.1.1 Effect of overburden pressure	68
3.6.1.2 Vibro Pile Caps	68
3.6.1.3 Effect of Time after Installation	· 71
3.7 RESULTS	72
3.8 FILED EVALUATION OF SOIL PROPERTIES BEFORE AND AFTER INSTALLATION OF PARIALLY DISPLACEMENT PILES	77
3.8.1 Dutch Cone Tests	77
3.8.1.1 The test performance	79
3.8.1.2 Stage I tests	82
3.8.1.3 Stage II tests	85
3.8.2 Analysis of Results	87
3.8.3 Effect of Installation on Soil Surrounding	88
Presso-Drill Piles or The Surrounding Fully	
Displacement Piles	
3.8.4 Pile Integrity Testing	89
3.8.4.1 Introduction	89
3.8.4.2 Excavation and findings	90

CHAPTER 4 DISCUSSION AND ANALYSIS OF MONOTORING

DATA AND RESULTS OF NUMERICAL STUDIES

4.1	INTRODUCTION	94
4.2 5	SUBGRADE REACTION:	95
4.3	GENERAL BEHAVIOR OF RAFT BASED ON	98
THI	E FIELD MONITORING DISPLACEMENT.	
4.4 1	DEVELOPED MODEL NUMERICAL MODEL	117
	4.4.1 Comparison between Calculated and	118
	Monitored Displacements for the Different	
	Monitored points	
4.5	COMPARATIVE STUDY BETWEEN BENDING	136
MO	MENTS FROM DIFFERENT DESIGN	
ASS	UMPTIONS.	
СНАРТИ	ER 5	
SUMMA	RY, CONCLUSIONS AND	
RECOM	MENDATIONS FOR FURTHER STUDIES	
5.1 S	SUMMARY	149
5.2 (CONCLUSIONS:	151
5.3 F	RECOMMENDATION FOR FUTURE STUDIES	152
REFERE	NCES	154
APPENDE	$\mathbf{z}\mathbf{x}$	160

List of Tables

Table		Page No
2.1	Average Skin Friction Values for Straight – Sided	10
	Piles in Cohesionless Soils (After Vesic,1970)	
2.2	Load Share Transmitted by The Piled of The	48
	Piled Raft $(3x3, L = 40 m)$: 1)
3.1	Results of Loading Tests	63
3.2	Results of Pile Load Test on Single Presso Piles	66
3.3	Pile Test Information	67
3.4	Data for The Pile Load Tests	71
3.5	Results of Testing Program	77
3.6	Summary of Pile Group Classification	90
4.1	Pile Load Test Data, Presso Drill Piles (West Zone)	96
4.2	Pile Load Test Data, Presso Drill Piles (East Zone)	96
4.3	Pile Load Test Data, Presso Drill Piles (Middle Zone)	96
	T (SM switched Doints	98