CORD BLOOD LIPID HETEROGENEITY AND NEONATAL ANTHROPOMETRY

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

Presented by

Sarah Bakr Mohammed

M.B.B.Ch.2010 Faculty of Medicine - Ain Shams University

Under Supervision of

Prof. Dr. Mohammed Sami El Shimi

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Prof. Dr. Mona Hussein El-Samahy

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Rania Ibrahim Hosni Ismail

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

List of Contents

Title	Page No.
List of Abbreviations	ii
List of Tables	v
List of Figures	vii
Introduction	1
Aim of the work	3
Review of Literature	
• Cord Blood Lipoproteins and Prenatal Influences	4
Lipids and Lipoproteins	23
Lipoprotein Metabolism	27
• Lipoproteins and Atherosclerosis	35
• Atherosclerosis and Cardiovascular Disease in Childle	hood 40
• Neonatal Anthropometry and its Clinical Applica	tion46
Subjects and Methods	63
Results	76
Discussion	105
Summary	121
Conclusion	123
Recommendations	124
References	125
Arabic Summary	

List of Abbreviations

ACTH...... Adrenocarticotropic hormone

AGA Appropriate for gestational age

BMI..... Body mass index

CE..... Cholesterol esters

CH..... Cholesterol

CHD..... Coronary heart disease

cm...... Centimeters

CNS..... Central neruous system

CVD Cardiovascular diseases

dl..... deciliter

E2..... Estradiol

ELBE Extremely low birth weight

FELIC..... Fate of early lesions in children

GH..... Growth hormone

gm..... Gram

HDLC High low density lipoprotein cholesterol

HDL-R..... High low density lipoprotein receptor

HDL-SM High density lipoprotein-sphingomyelin

IDL...... Intermediate density lipoproteins

IGF-1..... Insulin life growth factor-1

IHD..... Ischemic heart diseases

IMT..... Intima-media thickness

IUGR Intrauterine growth retardation

List of Abbreviations_(Cont...)

Kcal Kilo calories

Kg..... Kilograms

L..... Length

LBW..... Low birth weight

LCAT..... Lecithin-cholesterol acyltransferase

LDL..... Low density lipoprotein

LDLC..... Low density lipoprotein cholesterol

LDL-R Low density lipoprotein receptor

LGA Large for gestational age

LPL Lipoprotein lipase

m..... Meters

MDA Mediterranean diet adherence

MEN..... Multiple endocrine neoplasia

mg...... Milligrams

mm Millimeters millimeters

PCSK9...... Proprotein convertase subtilisin/kexine type 9

PE Preeclampsia

SD..... Standard deviation

SGA..... Small for gestational age

SHS...... Second hand smoke

TBF Total body fat

TC...... Total plasma cholesterol

TG Triglycerides

List of Abbreviations_(Cont...)

TS Tricipital skinfold

VLBE..... Very low birth weight

VLDL...... Very low density lipoprotein

W..... Weight

Wk..... week

List of Tables

Table No.	Title Page No.).
Table (1):	Causes of small for gestational age	54
Table (2):	Definition of terms	56
Table (3):	Comparison of Cord Blood Lipid Profiles from Different studies and Nelson Textbook	67
Table (4):	Maturity, Gender and Fullterm's Weight distribution among the neonates	79
Table (5):	Demographic data of all studied neonates	80
Table (6):	Demographic data of the preterms and the fullterms subgroups.	83
Table (7):	Comparison of cord blood lipid profiles betweenPreterms and Fullterms.	84
Table (8):	Comparison of cord blood lipid profiles between males and females.	85
Table (9):	Comparison between AGA, SGA and LGA fullterm neonates as regard to their maternal factors	86
Table (10):	Comparison of cord blood lipid profiles between AGA, SGA and LGA fullterm neonates.	88
Table (11):	Comparison of cord blood lipid profiles between obese and non obese mothers.	90
Table (12):	Comparison of cord blood lipid profiles between neonates delivered vaginally and those delivered by caesarian section.	91
Table (13):	Correlation between cord blood HDL and, both, neonatal anthropometric measurements and maternal factors.	92
Table (14):	Correlation between cord blood TG and, both, neonatal anthropometric measurements and maternal factors	93
Table (15):	Correlation between cord blood LDL and, both, neonatal anthropometric measurements and maternal factors.	94

List of $Tables_{(Cont...)}$

Table No.	Title	Page	No	
Table (16):	Correlation between cord blood TC an anthropometric measurements and material	*		97
Table (17):	Multiple linear regressionanalysis dependent variable.			. 100
Table (18):	Multiple linear regressionanalysis dependent variable.			. 102
Table (19):	Multiple linear regressionanalysis dependent variable.			. 104
Table (20):	Multiple linear regression analysis dependent variable.			. 106

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Structure of a Plasma Lipoprotein	27
Fig. (2):	Reverse cholesterol transport	30
Fig. (3)	Phosphoplipids	33
Fig. (4):	Fatty acids	35
Fig. (5):	Cholesterol	36
Fig. (6):	Beam Balance Scale	51
Fig. (7):	Electronic baby scale	51
Fig. (8):	Weight for Gestational Age Chart	52
Fig. (9):	Length for gestational age chart	58
Fig. (10):	Head circumference for gestational age chart	61
Fig. (11):	Digital skin fold caliper	63
Fig. (12):	Triceps Skin fold measurement	63
Fig. (13)	Subscapular skin fold measurement	64
Fig. (14):	Harpenden skinfold caliper	75
Fig. (15):	Gender distribution of all the neonates	81
Fig. (16):	Maturity distribution of all neonates	81
Fig. (17):	Weight distribution of the fullterm neonates	82
Fig. (18):	Comparison of cord blood lipid profiles between and Fullterms.	
Fig. (19):	Comparison of cord blood lipid profiles betwand females	
Fig. (20):	Comparison of cord blood lipid profiles betw SGA and LGA fullterm neonates	
Fig. (21):	Comparison of cord blood lipid profiles betwand non obese mothers	
Fig. (22):	Comparison of cord blood lipid profiles between delivered vaginally and those delivered by section.	caesarian

List of Figures

Fig. No.	Title Page No.	
Fig. (23):	Correlation between cord blood LDL and Triceps skinfold thickness	95
Fig. (24):	Correlation between cord blood LDL and Subscapular skinfold thickness.	95
Fig. (25):	Correlation between LDL and maternal age.	96
Fig. (26):	Correlation between TC and Subscapular skinfold thickness	98
Fig. (27):	Correlation between TC and Triceps skinfold thickness	98
Fig. (28):	Correlation between TC and maternal age.	99
Fig (29):	Multiple linear regressionanalysis with LDL as dependent variable	.105

INTRODUCTION

Several maternal and fetal factors, such as hypertension, diabetes, obesity, and low or high birth weight, can influence fetal plasma lipids(Kherkeulidze et al., 2004).

Low birth weight (LBW) is associated with increased incidence of CVD, hypertension, and type II diabetes(Baker et al., 1993).

Changes in blood lipids in LBW newborns with relative insulin intolerance can increase the risk of CVD in adulthood. LBW is a risk of later atherosclerotic diseases that is equal to smoking or hypertension at puberty(Mi et al., 2000).

On the other hand, high birth weight is associated with increased insulin-like growth factor-1 (IGF-1) that could change lipoprotein composition and concentration at birth, and could increase the risk of CVD(Lombardi et al., 1997).

The cord blood lipid profile may be associated with changes in the metabolic functions lifelong individual(Kelishadi, 2007).

The correlation of cord blood lipid profile in neonates with their anthropometric data and their predictive role as

markers for adulthood diseases is still not completely explored(Nayak et al., 2013).

Among children, Levels of lipidsare strongly related to subscapular and triceps skinfold thicknesses. Adverse levels of cardiovascular disease risk factors and dyslipidemia are associated with specific estimates of body fatness obtained from skinfold thicknesses(Steinberger et al., 2005).

In the present study we hypothesized that high levels of lipids in cord blood might also be correlated withthe neonatal anthropometric measurements, as the case in children, and accordingly those anthropometric measurements could be considered an easy non invasiveway in neonates to predict dyslipidemia and cardiovascular diseases intheir adulthood and so take preventive measures as early as possible.

AIM OF THE STUDY

The primary aim of this work is to studycord blood lipid profile and its relation toneonatal anthropometry.

The secondary aim is to detect the influence of maternal obesityand maternal age on cord blood lipid profile.

CORD BLOOD LIPOPROTEINS AND PRENATAL INFLUENCES

1. The composition of cord lipids:

The concentration of lipids in cord blood serum is considerably lower than that found in adults. Cord total cholesterol (TC)is 68 mg/dl(*Neal*, 2007) which is approximately one-third (33-38.2%) that of adult levels(Nagasaka et al., 2002), LDL is 29 mg/dl(Neal, 2007) which is also one third (31.9%) of adult levels (Nagasaka et al., 2002), whileHDL and triglycerides are 35 mg/dl, 34 mg/dl respectively(Neal, 2007) which is about half (50.5% and 46.2%, respectively) of adult levels. **VLDL** is also present at lower concentrations(Nagasaka et al., 2002).

The majority of neonatal cholesterol is carried by HDL particlesand makes up 44% of the total lipoproteins in cord serum, compared with 14% and 40% for VLDL and LDL, respectively. Thus, in contrast to adults, total cholesterol in newborns is highly correlated with both HDL and LDL and distributed almost equally between them (*Peticca et al., 2013*). This low LDL: HDL ratio has been attributed in part to a reduced transfer of esterified cholesterol from HDL to other lipoproteins, and the decline in LDL near term to increased LDL utilization by fetal adrenals. However, there does not seem to be

6 ____

a generalized increase in LDL receptor activity towards late gestation(*Bastida et al.*, 1996; *Loughrey et al.*, 2000).

LDL composition is richer in triglycerides and poorer in cholesterol esters compared with that of adults, whereas HDL composition is similar to that in adult blood. Some studies have reported VLDL in cord blood to be significantly richer in cholesterol esters and poorer in triglycerides compared with adults(*Bansal et al.*, 2005).

Every apolipoprotein apart from apoE has been reported to be lower in cord than adult serum, with apoB and apoD most reduced, apoB between 25 and 31% and apoD 37% of adult levels. ApoAII and apoCIII are thought to be 49% and 45% of adult values, respectively, while apoAI and apoCII are closer to adult levels (63.4% and 73.3%)(*Averna et al.*, 1991).

ApoE concentrations are similar to adult values, but in contrast to adults, more than 80% of apoE is associated with HDL]. This is compatible with HDL providing a source of cholesterol for growing tissues, the apoE rich HDL being taken up by LDL receptors, a situation not unlike that in many adult mammalian species in which HDL remains the dominant circulating lipoprotein. Interestingly, this situation persists in the human nervous system inadulthood (*Bansal et al.*, 2005).