

Study on the expression of interferon alpha related genes in hepatitis C infected patients.

A Thesis

Submitted for the Degree of Ph.D. in Science (Microbiology)

Presented by

Ghada Maher Mahmoud Salum

(B.Sc. Micro. &Chem. Zagazig University, 2004)

(M.Sc. Microbiology, Cairo University, 2011)

Assistant researcher at Microbial Biotechnology Department

National Research Center

Under supervision of

Prof.Dr. Ahmed B. Barakat

Professor of Virology

Microbiology Department, Faculty of Science

Ain Shams University

Prof.Dr. Mostafa K. El-Awady

Proffessor of Molecular Genetics

Microbial Biotechnology Department

National Research Center

Prof.Dr. Noha G. Bader El Din

Proffessor of Medical Biotechnology

Microbial Biotechnology Department

National Research Center

Microbiology Department Faculty of Science Ain Shams University (2016)

ACKNOWLEDGMENT

First and foremost thanks for ALLAH

There are a lot of people I have to thank for giving me the mental strength and support I needed to complete this thesis.

My Mentors and First teachers, my parents, deserve more than acknowledging, their keen patience and endless support for every step in my life. They offered what they could and asked none.

I would like to express my thanks and gratitude to **Prof. Dr.**Ahmed Barakat Barakat, Professor of Virology; Faculty of science; Ain Shams University, for his kind supervision, guidance, encouragement and his continuous help and endless support throughout this work.

My deepest heartfelt gratefulness is due to **Prof. Dr.**Mostafa Kamel El-Awady, Professor of Molecular Biochemistry, National Research Center, for suggesting the point of this thesis, building up the hypothesis related to the results. Also, I thank him for his kind supervision and endless support and excellent suggestions during this work. Really, it is a great gift from ALLAH to be one of his students.

My excellent supervisors **Prof. Dr. Noha Bader El Dín & Dr. Marwa Ibrahím Khalíl** deserve a very special
mention as their support, guidance, encouragement and reassurance
were essential during all stages of this thesis. I want to thank them
for their bearing with me on the bad days (and on the good days)!
Thank you, dr. Noha, Thank you, dr. Marwa.

I appreciate the support of my very sweet beloved friend sally for her never ending moral support, encouragement and prayers.

Sincere thanks and respect to **Prof. Dr. Ashraf Tabll** president of Microbial Biotechnology Department, National Research Center.

Thanks and gratitude to **Dr, Reem El Shennawy**, for her continous help. Also essential was the support provided by all members of the laboratory group, past and present, who made daily life in the lab fun and enjoyable and who had to endure my complaining more often than not! Thank you, **Dr, Reham, Yasmíne, Rehab, Tawfeek, Maí, and Anany.** Many thanks to all members of the Biomicrobial technology Department.

Tremendous love and special gratitude to my parents and my brothers who always stand beside me when I need them and prayed for my success. Undoubtedly, their prayers are an umbrella of protection. My beloved husband **Mohamed**, I thank him from the depth of my heart for all of his help, caring attitude, moral support and sharing the moments of anxirety. I especially acknowledge the sacrifice of my son **Abdulrahman**, and my daughter **Hana** who suffered because their mother was busy working on her thesis.

This dissertation has not been previously submitted for any degree at this or at any other university.

Ghada Maher Salum

List of contents

Page
List of TablesX
List of FiguresXII
List of AbbreviationsXIV
Chapter I: Introduction1
Chapter II: Review of Literature5
2.1 Hepatitis C Virus Characteristics5
2.1.1 General Background of Hepatitis C Virus5
2.1.2 Molecular Virology of HCV6
2.1.3 HCV Genotypes and Subtypes9
2.1.4 Epidemiology of HCV Genotypes Worldwide10
2.1.5 HCV in Egypt
2.1.5 Natural History of Hepatitis C Virus
2.1.5.1 Acute hepatitis C infection
2.1.5.2 Chronic HCV infection
2.1.5.3 Cirrhosis and Hepatocellular Carcinoma15
2.2 HCV Liver disease progression
2.2.1 Liver Fibrosis
2.3 Factors that Promote Progression of Chronic Hepatitis C19
2.3.1 Viral Factors
2.3.2 Host Factors 20
2.4 Human Immune Response against HCV infection22
2.4.1 Innate Immune response
2.4.1.1 The Interferon Anti-Viral System24
2.4.1.1.1 Interferon Family of Cytokines26
2.4.1.1.2 Interferon Signalling Pathway28
2.4.2 Adaptive Immune Responses

2.4.2.1 Neutralizing Antibodies	32
2.4.2.2 CD4+ T Cells	33
2.4.2.3 CD8+ T Cells	34
2.5 What are the mechanisms of HCV Evasion from	Immune
Response?	35
2.5.1 Variability of HCV Sequences	36
2.5.2 Mutations allow T cell evasion	36
2.5.3 T Cell Inhibitory Receptors	37
2.6 Current treatment approaches and limitations	38
2.6.1 Predictors of Progression of HCV Infection	39
2.6.1.1 Liver Biopsy	40
2.6.1.1.1 Liver biopsy scoring systems	40
2.6.1.2 Overview of Non-Invasive Markers of	
Fibrosis	45
2.6.1.3 Genetic markers for liver fibrosis	
evaluation	44
2.6.1.3.1 Gene Expression in Liver Biopsy	46
2.6.1.3.2 Gene Expression in Blood (PBMCs)	47
2.6.1.4 Others markers for liver fibrosis evaluation	48
2.6.1.4.1 C-Caffeine Breath Test (CBT)	48
2.6.1.4.2 Differentially expressed proteins	48
2.7 Overview of the Latest Techniques for Monitoring th	e Expression
of a Panel Disease-Specific Gene	49
2.7.1 Microarray	50
2.7.2. Genes Expression profiling by Real Time PCR and	l RT²
Profiler PCR Arrays	52
2.7.2.1 Detection Systems	53
2.7.2.1.1 Non-Specific Detection Systems	53

2.7.2.1.2 Specific Detection Systems
2.7.2.1.2.1 Fluorophore-labeled oligonucleotide 54
2.7.2.2 Important Definitions in RT ² Profiler PCR
Arrays61
2.7.2.3 Methods for analyzing real-time PCR data64
Chapter III: Subjects and Methods67
3.1.1. HCV- Chronically infected patients67
3.1.2. Healthy subjects
3.2. Histologic evaluation of Biopsy samples
3.3 Detection of HCV RNA69
3.4 Total Cellular RNA extraction, Purification and Quality
checking69
3.4.1. Extraction of Total RNA from PBMCs69
3.4.1.1 Reagents69
3.4.1.2 Supplies
3.4.1.3 Procedure71
3.4.2 Quantification of RNA and Quality checking73
3.4.2.1 Reagents
3.4.2.2 Supplies73
3.4.2.3 Procedure
3.5 cDNA synthesis74

3.5.1 Reagents	74
3.5.2 Supplies	75
3.5.3 Procedure	76
3.5.3.1 Preparation of Genomic DNA Elimination Mix	76
3.5.3.2 Preparation of Reverse Transcription Mix	
3.6 RT ² Profiler PCR Arrays	
3.6.1 Reagents	
3.6.2 Supplies	
3.6.3 Procedure	
3.7 Real Time PCR for RT ² q PCR Primer Assay	
3.7.1 Reagents	
3.7.2 Supplies	83
3.7.3 Procedure	84
3.8 Data Normalization.	85
3.9 Human MyD88 ELISA	85
3.9.1 Reagents	85
3.9.2 Supplies	87
3.9.3 Procedure	88
3.9 Pathway-enrichment analysis	89
3.10 Statistical analysis	90
3.10.1 Clinical data& gene expression	90
3.10.2 Receiver Operating characteristics (ROC) Curves	
Analysis	90
3.10.3 Correlation Analysis	91
Chapter V: Results	92
4.1 Sample description	92
4.2 Quantification of RNA and Quality checking	
4.3 PCR Array Data	95

4.3.1 Type I IFN genes (84 genes) expression pattern95
4.3.2 Differential expression of 14 IFN pathway genes showing
statistically significant dysregulation in HCV-chronic infected
patients compared with healthy controls99
4.3.3 HCV-induced hepatic fibrosis is associated with dysregulated
14 type I IFN pathway related genes
4.3.4 Dysregulation of several type I IFN related transcripts in
PBMCs of HCV chronically infected patients with late fibrosis
compared to those with early fibrosis
4.4 Validation of PCR Array Data using real-time
PCR
of the experiments
4.4.3 Evaluation of TLR7 Pathway-related genes as biomarkers for
discrimination between HCV fibrotic patients (F0-F4) and healthy controls
4.4.4 Diagnostic value of TLR7 mRNA expression when comparing
late HCV fibrotic patients (F2-F4) with early fibrotic patients (F0-
F1)131
4.5 Correlations between the studied variables in HCV
patients
4.6 HCV- induced hepatic fibrosis is associated with elevated serum
level of MyD88 protein137
Chapter V: Discussion140

Chapter VI: Summary& Conclusion	155
Chapter VII: References	161
Appendix1: Human Type I Interferon Response RT	² Profiler TM
PCR Array Gene Table (SABiosciences)	192
الملخص العربي	203
المستخلص	208

List of Tables

Page
Table (A): Ishak Modified HAI. 42
Table (B): The Metavir System43
Table (C): Genomic DNA elimination mix
Table (D): Reverse-transcription mix
Table (E): Cycling conditions for Rotor Gene cycler81
Table (F): Quantitative real time polymerase-chain reaction (qRT-PCR) primer sequences
Table (G): PCR component mix for one reaction84
Table (1): Clinical features of chronic HCV infected patients with early and late liver fibrosis selected for the PCR array experiment
Table (2): Differential gene expression of type I IFN pathway genes
in PBMCs of HCV-chronically infected patients compared to control subjects
Table (3): Differential expression of 14 IFN pathway genes99
Table (4): Differential expression of type I IFN pathway genes
showing statistically significant regulation in HCV-chronic infected
patients with late liver fibrosis compared to patients with early liver
fibrosis

Table (5): Clinical features of chronic HCV infected patients with
early and late liver fibrosis selected for the validation of qRT-PCR
experiments124
Table (6): Receiver operating characteristic curves (ROC)128
Table (7): Receiver operating characteristic curves (ROC)131
Table (8): Relationship between the studied transcripts (TLR 7,
MyD88, IRF7, NF κ B1) in HCV fibrotic patients assessed by
Spearman's (nonparametric) & Person's (parametric) correlation
analyses135
Appendix1: Human Type I Interferon Response RT ² Profiler TM PCR
Array Gene Table

List of Figures

Page
Figure (A): Simplified graph of the configuration of the
Hepatitis C virus particle8
Figure (B): Genome organization of Hepatitis C virus9
Figure (C): The most common HCV genotype for each country worldwide
Figure (D): Natural History of Hepatitis C Virus (HCV) Infection (Seef, 2002)
Figure (E): Hepatitis C virus (HCV) infection and immune response
Figure (F): Double-stranded DNA-intercalating agents/DNA-binding dyes
Figure (G): Diagram represents hydrolysis probes59
Figure (H): Diagram depicts hybridization probe60
Figure (I): Single amplification plot clarifies the definitions commonly used in real-time quantitative PCR63
Figure (1): Spectral display showing data for measured RNA sample
Figure (2a): Scatter plot representing dysregulation in type I IFN genes in early fibrotic HCV patients
Figure (2b): Scatter plot representing dysregulation in type I IFN genes in late fibrotic HCV patients104
Figure (3): Diagrammatic representation of the 14 significantly dysregulated genes when comparing their fold regulation in Early (F0-F1) versus Late (F2-F4) fibrosis

Figure (4): Diagrammatic representation of type I IFN most dysregulated genes in early versus late fibrotic patients122
Figure (5): Diagrammatic representation of the expression pattern of TLR7 pathway key related transcripts in early versus late fibrotic patients
Figure (6): ROC curve analyses demonstrate the expression pattern of TLR7 pathway key related transcripts in HCV fibrotic patients (F0-F4) compared to healthy controls
Figure (7): Receiver operating characteristic (ROC) curves demonstrate the expression pattern of TLR7 pathway key related transcripts in Early fibrotic patients (F0-F1) compared to Late fibrotic patients (F2-F4)
Figure (8): Scatter plot presenting the results of person's correlation analysis
Figure (9): Scatter plot presenting the results of person's correlation analysis
Figure (10): Diagrammatic representation of MyD88 serum expression in early versus late fibrotic patients

List of Abbreviations

Abbreviation	Full Name
ALT	Alanine amino transferase
a.a	Amino acid
AUROC	Area under the Receiver Operating Curve
bp	Base pair
B2M	Beta-2-Microglobulin
BMI	Body mass index
CARD	Caspase recruitment domain
CTGF	Connective Tissue Growth Factor
cDNA	Complementary DNA
CRS	Cirrhosis risk score
CBT	Caffiene Breath Test
Ct	Threshold Cycle
DAA	Direct Acting Antiviral Agent
EDITA	Ethylene diamine tetra acetic acid
ELISA	Enzyme Linked Immunosorbent Assay
ECM	Extracellular matrix
GGT	Gamma Glutamyl Transferase
GTP	guanosine triphosphate
HAV	Hepatitis AVirus
HAI	Histology activity index
HBV	Hepatitis B Virus
HCC	Hepatocellular Carcinoma
HCV	Hepatitis C Virus
HIV	Human Immunodeficiency Virus