

Ain Shams University

Faculty of Pharmacy

Pharmacognosy Department

Phytochemical and Biological Investigation of Phoenix roebelenii (Family Arecaceae)

A Thesis

Submitted in partial fulfillment for the requirements of Master of Science degree in Pharmaceutical Sciences
Submitted by

Eman Mohamed Mohamed El-Taher

B.Sc. of Pharmaceutical Sciences Ain Shams University, 2008 Supervised by

Professor Dr. Abd El-Nasser B. Singab,

Professor of Pharmacognosy, Dean of Faculty of Pharmacy, ASU

Associate Professor Dr. Mohamed R. ElGindi,

Associate Professor of Pharmacognosy, Head of Pharmacognosy Department, ERU

Associate Professor Dr. Mona El-Said Kassem

Associate Professor of Pharmacognosy, Department of Phytochemistry and Plant Systematics, National Research Centre

Acknowledgment

All praise is due to Allah, Most Merciful, and The Lord of the World, Who taught man what he knew not. I would like to thank Allah Almighty for bestowing upon me the chance, strength and ability to complete this work.

I would like to express my thanks and gratitude to the members of the advisory committee; Prof. Dr. Abdel Nasser Singab, professor of Pharmacognosy and dean of faculty of Pharmacy, Ain Shams University for his kind supervision, advice, helpful suggestions, valuable assistance, constant guidance and encouragement throughout the study. I am truly proud to be one of his students.

Assoc. Prof. Dr. Mohamed ElGindi, Associate Professor of Pharmacognosy and head of Pharmacognosy Department, Egyptian Russian University for his kind supervision, indispensible advice, valuable comments and brilliant ideas. It has been an honor serving the department and working with him.

Assoc. Prof. Dr. Mona Kassem, Associate Professor of Pharmacognosy, Department of Phytochemistry and Plant Systematics, NRC; it was a great pleasure to conduct this thesis under her supervision. She could not even realize how much I have learnt from her. Besides excellent supervision, she tried to be very helpful in every respect.

I am deeply indebted to Prof. Dr. Omayma ElGindi, Faculty of Pharmacy, Egyptian Russian University for her moral support, continuous encouragement that helped me to improve the whole work.

I wish to express my warm and sincere thanks to Dr. Dina M. Y.El naggar, Lecturer of Pharmacognosy, Faculty of Pharmacy, Al azhar University for her continuous encouragement. She is an example to what a young female researcher could be.

I would like to thank, Prof. Dr. Ihab Fetouh, Dean of Faculty of Pharmacy, Egyptian Russian University and my workmate for their continuous support and encouragement during the course of study.

My best regards are due to members of Department of Phytochemistry and Plant Systematics, NRC; who gave me the feeling of being one of them, in addition to their help, support and valuable hints. Finally, I am always indebted to my parents Mohamed M. El-Taher and Mona El-Deeb for their constant support, love and patience. Without their continued support, I would have not accomplished this effort of course, I say first and foremost Thanks to ALLAH.

Contents

	Page
List of Figures	i
List of Tables	iv
List of Abbreviations	vii
I. Introduction.	1
II. Review of Literature.	3
II.1. Phytoconstituents	3
II.2. Biological activity	17
III. Taxonomy	21
IV. Material, Apparatus and Techniques	26
IV.1. Material.	26
IV.2. Apparatus.	31
IV.3. Techniques.	32
Chapter 1: DNA profiling	46
Chapter 2: Preliminary phytochemical investigation	50
2.1. Phytochemical screening of the leaves and fruits	50
2.2. Determination of Macro and Micro-elements.	51
Chapter 3: Chemical investigation.	54
3.1. Quantitative estimation of the phenolic contents	54
3.1.1. Total phenolic content	54
3.1.2. Total flavonoid contents	55
3.2. Preparation of the extract	56
3.3. Chromatographic investigation	56
3.4. Extraction and isolation of phenolic compounds	57
3.5. Identification of the isolated compounds	61

3.5.1. Compound P1	61
3.5.2. Compound P2	66
3.5.3. Compound P3	71
3.5.4. Compound P4	76
3.5.5. Compound P5	79
3.5.6. Compound P6	83
3.5.7. Compound P7	86
3.5.8. Compound P8.	94
3.5.9. Compound P9	99
3.5.10. Compound P10	105
3.6. Investigation of the lipoidal matter	114
3.6.1. Investigation of unsaponifiable matter	115
3.6.2. Investigation of the fatty acid methyl esters	124
Chapter 4: Biological investigation.	134
4.1. Preparation of extracts for biological assay	135
4.2. In vitro antioxidant activity	135
4.3. <i>In vitro</i> cytotoxic activity	138
4.4. <i>In vitro</i> hepatoprotective assay	141
Summary	149
References	156
Arabic summary	

List of Figures

No.	Title	Page
1	Photograph of <i>Phoenix roebelenii</i> O'Brien Palm	25
2	Photograph of <i>Phoenix roebelenii</i> O'Brien Fruits	25
3	The obtained RAPD-PCR products for P. roebelenii O'Brien	49
4	Calibration curve of Gallic acid for colorimetric determination of total	55
	polyphenols.	
5	Calibration curve of Rutin for colorimetric determination of total	56
	flavonoids	
6	Scheme for the extraction and isolation of phenolic compounds from	59
	Phoenix roebelenii O'Brien	
7	UV spectra of compound (P1) in shift reagents	64
8	¹ H-NMR spectrum of compound (P1) in DMSO- <i>d</i> ₆ , 500 MHz	65
9	UV spectra of compound (P2) in shift reagents	69
10	¹ H-NMR spectrum of compound (P2) in DMSO- <i>d</i> ₆ , 500 MHz	70
11	UV spectra of compound (P3) in shift reagents	74
12	¹ H-NMR spectrum of compound (P3) in DMSO- <i>d</i> ₆ , 500 MHz	75
13	UV spectra of compound (P4) in shift reagents	78
14	UV spectra of compound (P5) in shift reagents	81
15	¹ H-NMR spectrum of compound (P5) in DMSO- <i>d</i> ₆ , 500 MHz	82
16	UV spectra of compound (P6) in shift reagents	85
17	UV spectra of compound (P7) in shift reagents	90
18	¹ H-NMR spectrum of compound (P7) in DMSO- <i>d</i> ₆ , 500 MHz	91
19	¹³ C-NMR spectrum of compound (P7) in DMSO- <i>d</i> ₆ , 125 MHz.	92
20	Positive ion ESI-MS spectrum of compound (P7).	93
21	UV spectra of compound (P8) in shift reagents.	96
22	¹ H-NMR spectrum of compound (P8) in DMSO- <i>d</i> ₆ , 500 MHz	97
23	EI-MS spectrum of compound (P8).	98

24	UV spectra of compound (P9) in shift reagents	101
25	¹ H-NMR spectrum of compound (P9) in DMSO- <i>d</i> ₆ , 500 MHz	102
26	¹³ C-NMR spectrum of compound (P9) in DMSO- <i>d</i> ₆ , 125 MHz.	103
27	EI-MS spectrum of compound (P9).	104
28	UV spectra of compound (P10) in shift reagents.	108
29	¹ H-NMR spectrum of compound (P10) in DMSO- <i>d</i> ₆ , 500 MHz.	109
30	¹³ C-NMR spectrum of compound (P10) in DMSO- <i>d</i> ₆ , 125 MHz.	110
31	EI-MS spectrum of compound (P10).	111
32	TIC of the unsaponifiable matter of <i>P. roebelenii</i> leaves.	120
33	TIC of the unsaponifiable matter of <i>P. roebelenii</i> fruit.	121
34	TIC of the saponifiable matter of <i>P. roebelenii</i> leaves.	129
35	TIC of the saponifiable matter of <i>P. roebelenii</i> fruit.	130
36	Antioxidant activity of the 70% methanol and petroleum ether extracts	136
	of both leaves and fruit	
37	SC ₅₀ for ascorbic acid, 70% methanol and petroleum ether extracts of	137
	P. roebelenii leaves and fruit.	
38	Cytotoxicity of 70% methanol and petroleum ether extracts of <i>P</i> .	139
	roebelenii O'Brien leaves and fruit against HEPG2	
39	Viability of monolayer of rat hepatocytes after 2 hrs treatment with	145
	different concentrations of P. roebelenii leaves and fruit extracts using	
	NR colourimetric assay. Each point represents the mean \pm S.D (n=3).	
40	Viability of monolayer of rat hepatocyte after 2 hrs treatment with	145
	different concentrations of P. roebelenii leaves and fruit extracts	
	followed by treatment with 25 mM paracetamol for 1hr. in	
	comparison with 50 μg silymarin as control using NR colourimetric	
	Assay. Each point represents the mean + SD (n=3).	

41 Effects of different extracts of *P. roebelenii* leaves and fruits on 146 absorbance of Neutral red

List of Tables

No.	Title	Page
1	Flavonoids identified in some <i>Phoenix</i> species.	4
2	Phenolic acids identified in some <i>Phoenix</i> species.	8
3	Triterpenes and/or sterols identified in some <i>Phoenix</i> species.	12
4	Classification of <i>P. roebelenii</i> O'Brien according to Dransfield <i>et al.</i> (2005).	22
5	Morphological characters of the genus <i>Phoenix</i> (Huxley et al., 1992).	23
6	Morphological characters of <i>P. roebelenii</i> O'Brien (Huxley et al., 1992).	24
7	Primers used for Random Amplified Polymorphic-DNA analysis and	
	their sequence.	26
8	Solvent systems used for PC investigation.	28
9	Molecular sizes in base pairs of amplified DNA fragments produced by	47
	ten decamer primers in P. roebelenii.	
10	Total numbers of RAPD-PCR fragments in P. roebelenii O'Brien.	48
11	Preliminary phytochemical screening of P. roebelenii O'Brien leaves	50
	and fruits.	
12	Macro and Micro elements in the total ash of the leaves and fruit of <i>P. roebelenii</i> .	51
13	Column chromatography of fractionation of P. roebelenii O'Brien	60
	leaves extracts.	
14	Data of compound (P1).	61
15	¹ H-NMR spectral data of compound (P1).	62
16	Data of compound (P2).	66
17	¹ H-NMR spectral data of compound (P2).	67
18	Data of compound (P3).	71
19	¹ H-NMR spectral data of compound (P3).	72

20	Data of compound (P4).	76
21	Data of compound (P5).	79
22	¹ H-NMR spectral data of compound (P5).	80
23	Data of compound (P6).	83
24	Data of compound (P7).	86
25	¹ H-NMR and ¹³ C-NMR spectral data of compound (P7).	87
26	Data of compound (P8).	94
27	¹ H-NMR spectral data of compound (P8).	94
28	Data of compound (P9).	99
29	¹ H-NMR and ¹³ C-NMR spectral data of compound (P9).	99
30	Data of compound (P10).	105
31	¹ H-NMR and ¹³ C-NMR spectral data of compound (P10).	106
32	Phenolic compounds isolated from the leaves of Phoenix roebelenii	
	O'Brien.	112
33	Yield of lipoidal matter in <i>P. roebelenii</i> leaves and fruit and percentage	
	of composition of unsaponifiable and saponifiable matter.	114
34	GC/MS analysis of the unsaponifiable matter of <i>P. roebelenii</i> leaves.	116
35	GC/MS analysis of the unsaponifiable matter of <i>P. roebelenii</i> fruit.	118
36	GC/MS analysis of the saponifiable matter of <i>P.roebelenii</i> leaves.	125
37	GC/MS analysis of the saponifiable matter of <i>P. roebelenii</i> fruit.	127
38	DPPH inhibition (%) of the 70% methanol and petroleum ether extracts	136
	of P. roebelenii leaves and fruit at different concentrations.	
39	SC_{50} for ascorbic acid, 70% methanol and petroleum ether extracts of P .	
	roebelenii leaves and fruit.	137
40	Cytotoxic activity of 70% methanol and petroleum ether leaves and fruit	
	extracts of P. roebelenii O'Brien.	139

41	IC ₅₀ (μg/ml) values of the 70 % methanol and petroleum ether extracts	
	of Phoenix roebelenii O'Brien leaves and fruit.	140
42	In vitro hepatotoxicity of different extracts of P. roebelenii O'Brien	
	leaves and fruits.	142
43	In vitro hepatoprotective assay of different extracts of P. roebelenii	
	O'Brien leaves and fruits.	144

List of Abbreviations

ANOVA Analysis of variance

bp base pairs C Carbon

¹³C-NMR Carbon-13 Nuclear Magnetic Resonance

δ Chemical shift relative to a standard (e.g. TMS)

CC Column Chromatography

CoPC Comparative Paper Chromatography

J value Coupling constant

DL Day Light

DNA Deoxyribonucleic acid

DMSO-*d*₆ Deutrated dimethoxysulfoxide DPPH 2,2-diphenyl-1-picryl hydrazyl

EI-MS Electron Impact –Mass Spectroscopy

ESI-MS Electron Spray Ionization—Mass Spectroscopy

EDTA Ethylene diamine tetra acetic acid

GC/MS Gas Chromatography Coupled with Mass Spectrometry

g gram

IC₅₀ Half maximal inhibiting capacity SC₅₀ Half maximal scavenging capacity

Hz Hertz

HPLC High Performance Liquid Chromatography

m/z Mass to charge ratio

MHz Mega Hertz

µg Micro grams

mM milli Mole

mg milligram

min. minute

nm Nanometer

NRC National Research Centre

-ve negativeNR Neutral Red1D One-dimensional

PC Paper Chromatography

ppm Part per million

P. Phoenix

PCR Polymerase Chain Reaction

+ve positive

PPC Preparative Paper Chromatography

H-NMR Proton Nuclear Magnetic Resonance

RAPD Random Amplified Polymorphic DNA

 R_f Rate of flow R_t Retention time rpm rotation per minute S.D Standard deviation SRB Sulforodamine B

TIC Total Ion Chromatogram

2DPC Two Dimensional Paper Chromatography

UV Ultraviolet

 λ Wave length (nm)

I. Introduction

Plants are used medicinally in different countries and are a source of many potent and powerful drugs (**Srivastava** *et al.*, 1996). A wide range of medicinal plant parts are used as extracts for raw drugs and they possess varied medicinal properties.

Palms in general possess many economic uses, the fruits of some species can be considered as an important crop used as nutrient, other species are used in the production of sugar, starch, fiber, wax, timber and oil which can be used in many pharmaceutical and food products. Palms have become increasingly important in commercial horticulture (**Bolombery and Tony, 1982**).

Palms "the princess of the plant Kingdom", represents the third most important plant family with respect to human use. Coconut and palm kernel oils were recognized as health oils in Ayurvedic medicine almost 4000 years ago (Hedrick, 1972 and Jones, 1995).

Numerous edible products are obtained from palms, including the familiar date palm fruits, coconut palm nuts and various palm oils. More than 800 uses have been recorded for the date palm alone, for it is the very foundation of life for several cultures (**Johnson**, **1998**).

Despite the economic importance of palm family, it has been chemically neglected, probably because of the difficulty of collecting fresh material and getting it authenticated. Most work has been carried out on economically important plants cultivated for their oils. Among the species which was neglected is *Phoenix roebelenii* O'Brien (**Litchfield, 1970**).

Aim of work

Members of the family Arecaceae are characterized by different classes of phenolic compounds (Tricin, luteolin and quercitin glycosides) constituting the major leaf components (Williams et al., 1973). Phenolic compounds have diverse beneficial biochemical effects on human health. They show antioxidant (Kähkönen et al., 1999), hepatoprotective (Chen et al., 2004), anticancer (Mukhtar et al., 1988) and anti-inflammatory (Yamamoto and Gaynor, 2001).

Reviewing the current literature, nothing has been reported about neither the biological activity nor phytochemical constituents of *Phoenix roebelenii* O'Brien.

The authors carried the responsibility to carry out the investigation of this plant in order to fulfill this gap of information.

This study includes:

1. Chemical investigation:

- 1.1. Phytochemical screening.
- 1.2. Quantitative estimation of phenolic content.
- 1.3. Isolation and structural elucidation of the isolated compounds.

2. Biological investigation:

In vitro study:

- 1. Assay of the antioxidant activity.
- 2. Assay of the cytotoxic activity.
- 3. Assay of the hepatoprotective activity.