Welding of Clad Carbon Steel Coated By Nickel Base Alloy

By

Mohamed Morsi Mohamed Farag

A Thesis Submitted to the Faculty of Engineering at Cairo University in partial fulfillment of the requirements of

Doctor of Philosophy

In

Metallurgical Engineering

Faculty of Engineering, Cairo University
GIZA, EGYPT

2015

Welding of Clad Carbon Steel Coated By Nickel Base Alloy

 $\mathbf{B}\mathbf{y}$

Mohamed Morsi Mohamed Farag

A Thesis Submitted to the Faculty of Engineering at Cairo University in partial fulfillment of the requirements of

Doctor of Philosophy

In

Metallurgical Engineering

Under the supervision of:

Prof. Dr. Mohamed Raafat El- Koussy,

Department of Petroleum, Mining and Metallurgy, Cairo University

Faculty of Engineering, Cairo University
GIZA, EGYPT

2015

Welding of Clad Carbon Steel Coated By Nickel Base Alloy

$\mathbf{B}\mathbf{y}$

Mohamed Morsi Mohamed Farag

A Thesis Submitted to the Faculty of Engineering at Cairo University in partial fulfillment of the requirements of

Doctor of Philosophy

In

Metallurgical Engineering

Approved by the Examining Committee:

Prof. Dr. Mohamed Raafat El- Koussy, Thesis main advisor

Prof. Dr. Ahmed Mohamed Elsheikh, (Internal examiner)

Prof. Dr. Tarek Ahmed Fouad Khalifa (External examiner)

Professor of production Engineering, Faculty of Shoubra, Benha University

Faculty of Engineering, Cairo University GIZA, EGYPT

2015

Engineer's Name: Mohamed Mosi Mohamed Farag

Date of Birth: 8/6/1975 **Nationality:** Egyptian

E-mail: Moh_mmmf@yahoo.com

Phone: 01068240575

Address:

Registration Date: 17 / 3 / 2009

Awarding Date: / / **Degree:** Doctor of Philosophy

Department: Mining, Petroleum and Metallurgy

Supervisors:

Prof. Dr. Mohamed Raafat El- Koussy, Cairo University

Examiners:

Prof. Dr.Eng. Tarek Ahmed Fouad Khalifa, (External examiner)

(Professor of production Engineering, Faculty of Shoubra, Benha University)

Prof. Dr. Ahmed Mohamed Elsheikh, (Internal examiner)

Prof. Dr. Mohamed Raafat El-Koussy, (Thesis main advisor)

Title of Thesis: Welding of Clad Carbon Steel Coated By Nickel Base Alloy

Key Words: - Clad carbon steel- Inconel 625- Grain boundary type II – Martensite – Tensile and compressive stress weld-cracks)

Summary:

The objective of this thesis is to provide a new welding procedure to get substantial cost saving without impairing corrosion resistance or mechanical properties. The suggested procedure was made by welding first and second passes only using AWS A5.14 ERNiCrMo3 and subsequent passes by AWS A5.1E7018. Unfortunately typical welding parameters recommended by filler metal supplier gave unacceptable mechanical properties. Microstructure evaluation demonstrated that: cracks were formed along type II boundary in second inconel pass and a martensitic layer was formed in carbon steel pass (3rd pass). In this investigation hydrogen was removed from the weldment by baking at 280°C but this hydrogen removing operation did not prevent cracking, indicating that hydrogen cracking is not the controlling mechanism of failure. High residual tensile stresses induced during welding and subsequent solidification are thought to be the main reason for cracking along type II gain boundaries. Reducing residual stresses by increasing preheat and interpass temperatures did not prevent cracking. Thus nonconventional techniques are required. A trial was attempted to prevent cracking along type II boundary in 2nd pass by controlling martensitic start temperature (T_{MS}) of the 3^{rd} pass to induce compressive residual stresses. Three levels of T_{Ms} (approximately 350, 200, and 50°C) are obtained. Cracks along type II boundary were prevented at T_{Ms} lower than 200°C; however type II boundary itself was prevented at T_{Ms} lower than 50°C. Although cracks were prevented by reducing T_{MS} of the 3rd pass and accept side bend properties were obtained, impact toughness properties were still not acceptable due to the formation of martensite in the 3rd pass. Thus tempering was necessary which requires cost. To avoid PWHT, AWS 5.11 ENi-1 as nickel rich filler metal was used to weld the 3rd pass and subsequent pass were welded by AWS A5.1E7018. As a result the microstructure of the 3rd pass was iron nickel martensite instead of iron martensite and average impact toughness increased from 22 to 47 Joule at 0°C.

ACKNOWLEDGMENTS

First of all I want to express my gratitude to my company; PETROJET, for providing me the financial and technical support to obtain my P.HD degree in Cairo University.

I would like to express my sincere thanks to my supervisors, Professor Mohamed Rafaat Elkousy, Profssor Nahed Abdel-Raheem and Dr. Morsy Amin for their support, professional guidance, patience encouragement, and affection through the course of my work.

My acknowledgment also goes to my friends, especially Mohamed Adel, Mohamed Fathy, and Tamer Nabil who helped me to accomplish this work.

Finally I would like to thank my parents. They raised me, support me, taught me, and loved me. Especial appreciation and gratitude is given to my loving, and supportive wife for her encouragements and patience, for listening to my complaints and frustrations, and for believing in me.

This thesis is dedicated to my children, Mena, Moaaz and Mariem.

Contents

Subjec	t		Page
Acknow	ledgeme	nt	i
List of 7	Гables		v
List of I	Figures		vii
List of I	Nomencla	ture	xiii
Abstrac	et		XV
Chapte	r 1: Intro	oduction	1
1.1	General	l	1
1.2	The cha	llenges and the aim of the work	2
1.3	The Me	thodology of thesis	3
1.4	The stru	acture of the thesis	4
1.5.	Definiti	ons	5
Chapte	er 2: Lite	rature Survey	6
2.1	Produ	action Methods	6
	2.1.1	Hot roll bonding	6
	2.1.2	Exclusive bonding	7
	2.1.3	Clad inlay or overlaying	8
2.2	Clad	product application	8
2.3	Cost	Saving	10
2.4	Joint	Design Considerations	11
2.5	Comp	position Control	11
	2.5.1	Dilution Control.	11
	2.5.2	Dilution Evaluation Methods	12
	2.5.3	Welding parameters that affect dilution	14
2.6	Comp	position Gradients and Chemical Inhomogeneity	15
	2.6.1	Macrosegregation in bulk weld metal	16

	2.6.2	Microsegregation in bulk weld metal	16
	2.6.3	Banding	22
	2.6.4	Carbon Migration	23
2.7	Prope	rties of Inconel 625	24
	2.7.1	Microstructure	24
	2.7.2	Physical constants and thermal properties	25
	2.7.3	Corrosion resistance	25
	2.7.4	High-temperature oxidation	26
2.8	Micro	structure of Partially Mixed Zone (PMZ)	26
	2.8.1	Effect of PWHT on PMZ microstructure	29
2.9		rs Controlling Thickness of Martensitic layer PMZ Control of welding parameters (Decreasing Ra)	33 34
	2.9.2	Reducing Hardenability	35
	2.9.3	Effect of grain size on hardenability	36
2.10	Grain	size control during welding	39
	2.10.1	Inoculation	39
	2.10.2	Arc oscillation	39
	2.10.3	Weld pool stirring.	40
	2.10.4	Arc pulsation	41
2.11	Effect	of External Magnetic Field on Martensitic	
	Transf	formation	41
	2.11.1	Effect of magnetic field on hardenability (C-curve and T_{Ms})	42
Chapter	3: Expe	rimental Work	43
3.1.	Mater	ial	43
	3.1.1	Base metal	43
	3.1.2	Filler metals	43
3.2.	Weldi	ng procedures	45

3.3.	Post V	Weld Heat Treatment	45
3.4.	Mech	anical tests	46
3.5	Micro	ostructural characterization	50
3.6	Estim	ated chemical composition of weld passes	50
Chapter	r 4: Resu	ults and Discussion	51
4.1	Weld	Carbon Steel on Nickel Base Alloy	51
	4.1.1	Macrostructure	51
	4.1.2.	Mechanical Properties	51
	4.1.3.	Microstructural Characterization	52
	4.1.4	Cracks along Type II Grain Boundary	61
	4.1.5	Macrosegregation	66
4.2	Preve	nting Cracking along Type II Boundary	68
	4.2.1	T _{MS} Controlling Methods	69
	4.2.2	Effect of T_{Ms} value on Type II grain boundary conditions	73
	4.2.2	Levels of T _{Ms}	87
4.3	Effect	of Post Weld Heat Treatment	88
4.4	Avoid	ling PWHT by using AWS A5.11ENi-1 as interlayer	91
	4.4.1	General	91
	4.4.2	Effect of using interlaying technique on mechanical	
		properties	91
	4.4.3	Effect of using interlaying technique on microstructure	
		characterization	93
Chapter	r 5: Con	clusion	101
Referer	1ces		103

List of Tables

Table	F	age
Table 2.1	Typical weld joint designs for clad vessels	10
Table 2.2	Typical chemical composition of Inconel alloy 625	24
Table 2.3	Physical properties of Inconel alloy 625 compared with carbon and	
	austenitic stainless steel	25
Table 3.1	Chemical composition of base and filler metals (wt. %)	44
Table.3.2	Average mechanical properties of base metal (API5L X65)	44
Table3.3	Typical chemical composition (Wt. %) of self-shielded E70T-4 flux	44
Table.3.4	Welding variables for all procedures	49
Table 4.1	Tensile test results for welding procedure No.1 [Heat input of the 3 rd	
	pass =1.2 KJ/mm]	53
Table 4.2	Side bend test results for welding procedure No.1 [Heat input of the	
	3 rd pass =1.2 KJ/mm]	53
Table 4.3	Impact V-notch toughness (Joule) at 0°C for welding procedure No.1	
	[Heat input of the 3 rd pass =1.2 KJ/mm]	53
Table 4.4	EXD analyses at points across the third pass, welding procedure No.1	
	[heat input of the 3 rd pass =1.2 KJ/mm]	55
Table 4.5	Estimated chemical analyses (wt %) and T_{Ms} (°C), welding	
	procedure No.1.	59
Table 4.6	Tensile Test Results, welding procedure No.2 [Preheated at 200°C,	
	baking at 280°C and heat input of the 3 rd pass =1.2 KJ/mm]	62
Table 4.7	Side Bend Test, welding procedure No.2 [Preheated at 200°C, baking	
	at 280° C and heat input of the 3^{rd} pass =1.2 KJ/mm]	62
Table 4.8	Impact V-notch Toughness (Joule) at 0°C, welding procedure No.2	
	[Preheated at 200°C, baking at 280°C and heat input of the 3 rd pass	
	=1.2 KJ/mm]	62
Table 4.9	Calculation of ASTM grain size number for grains appeared in	
	Fig.4.28 using intercept method (ASTM E112)	72
Table 4.10	EXD analyses at different distances from FB, welding procedure	
	No.3 [heat input of the 3 rd pass =1.4 KJ/mm]	75
Table 4.11	Estimated chemical composition at different distances from FB	

	between 2 nd and 3 rd passes, welding procedure No.3 [heat input of the	
	3^{rd} pass =1.4 KJ/mm]	76
Table 4.12	Tensile test results of procedures No. 3, 4 and 5	77
Table 4.13	Guided side bend test results of procedures No. 3, 4 and 5	77
Table 4.14	Notch impact toughness results (Joule) at 0°C of procedures No. 3, 4 and 5	79
Table 4.15	EXD analyses at different distances from FB, welding procedure	
	No.4 [heat input of the 3 rd pass =2.1 KJ/mm]	80
Table 4.16	Estimated chemical composition at different distances from FB	
	between 2 nd and 3 rd passes, welding procedure No.4 [heat input of the	
	3^{rd} pass =1.4 KJ/mm]	82
Table 4.17	EXD analyses at different distances from FB from FB between 2 nd	
	and 3 rd passes, procedure No5 [grain refining method- heat input of	
	the 3^{rd} pass =1.3 KJ/mm]	85
Table 4.18	Estimated chemical composition at different distances from FB	
	between 2 nd and 3 rd passes, procedure No.5 [grain refining method-	
	heat input of the 3^{rd} pass =1.3 KJ/mm]	86
Table 4.19	Average results of mechanical properties in as weld and tempered	
	conditions	89
Table 4.20	Tensile Test Results of procedures No. 6,7 and 8	92
Table 4.21	Guided side bend test results of procedures No. 6, 7 and 8	92
Table 4.22	Impact Toughness Results (Joule) at 0°C of procedures No. 6, 7 and 8	92
Table 4.23	EDX analyses at approximately mid of the forth pass and at	
	macrosegregated filler metal island	96
Table 4.24	The estimated chemical analyses and T_{Ms} of the forth pass	96
Table 4.25	Melting temperatures of nickel, carbon steel and inconel 625	98

List of Figures

Figure		Page
Fig.1.1	Schematic shows joining technology of external clad steel pipes	2
Fig.1.2	Schematic shows the conventional joining technology of internal clad	
	steel pipes	3
Fig.1.3	Schematic shows the suggested technology for joining of internal clad	
	steel pipes	3
Fig.1.4	Schematic illustrates the five distinct microstructural zones that exist in	
	dissimilar welds	5
Fig. 2.1	Hot rolled bonding.	6
Fig. 2.2	Explosive bonding process.	7
Fig 2.3	Submerged arc strip cladding	9
Fig 2.4	Electro-slag strip cladding	9
Fig 2.5	Comparison of the geometrically measured dilution levels and the	
	calculated dilution levels	13
Fig.2.6	Microstructural transition zones between weld metal and base metal	16
Fig.2.7	Formation of banding due to changes in the solidification rate "R"	22
Fig.2.8	Scaling resistance at 1800°F (Hastelloy is a trademark of Haynes	
	International.)	26
Fig.2.9	Light optical photomicrographs of the martensite layer observed in the	
	welds deposited using 309L (A), and 625 (B) filler metals	27
Fig.2.10	Schaeffler diagram which used for prediction of microstructure in ferritic,	
	austenitic, and dissimilar welds	28
Fig.2.11	Distribution of major alloying elements in the partially mixed zone of a	
	dissimilar welding between 2.25Cr-1Mo and alloy 800H	29
Fig.2.12	Schematic illustrates showing the evolution of microstructure in	
	dissimilar welds for the as-welded condition	31
Fig.2.13	Schematic illustrates showing the evolution of microstructure in	
	dissimilar welds for the aged condition	32
Fig.2.14	Graphical illustration shows the locations of actual and critical cooling	
	rates	34

Fig.2.15	Graphical illustration showing location of the intermetallic phases relative
	to that of martensite (allotropic) zone and the desired cooling curves
	where hard zone formation can be avoided
Fig 2.16	Relation between the austenite grain size and the T_{Ms}
Fig 2.17	Schematic diagram shows the effect of austenite grain size on the rate of
	isothermal transformation
Fig 2.18	Isothermal TTT diagram showing that the diagram is displaced to longer
	times for the longer austenite grain size (from Atlas isothermal
	transformation diagrams, U.S. Steel corporation Pittsburgh (1950))
Fig.2.19	Schematic diagram about arc oscillating.
Fig.2.20	Schematic sketch shows application of external magnetic field during
	autogenous GTAW. Modified from Matsuda. et. al
Fig.2.21	AC pulsed current
Fig.2.22	Schematic illustrates of free energy as a function of temperature with and
	without magnetic field.
Fig.3.1	Schematic of pipe steel X65 inside cladded by inconel 625
Fig. 3.2	Post weld heat treatment cycle.
Fig.3.3	Test sample positions according to ASME Section IX
Fig.3.4	Tensile test specimen details according to ASME IX-2007, where W is
	specimen width (19 mm), x is coupon thickness including reinforcement
	and y is specimen thickness.
Fig.3.5	Point bend test jig dimensions.
Fig.3.6	Charpy V-notch test piece dimensions for full sized specimens
Fig.3.7	Typical notch positions for Charpy V-notch test specimens
Fig.4.1	Weld macrographic etched with nital 5 % (X1)
Fig.4.2	Weld layers; second, third and fourth passes are observed, welding
	procedure No.1 [heat input of the 3 rd pass =1.2 KJ/mm]
Fig. 4.3	Thickness of the third pass as shown by optical microscope, welding
	procedure No.1 [heat input of the 3 rd pass =1.2 KJ/mm]
Fig. 4.4	(a) Microstructure and (b) Micro-hardness profile across the third pass,
	welding procedure No.1 [heat input of the 3 rd pass =1.2 KJ/mm]
Fig.4.5	EDX analyses and calculated dilution levels virus distance from fusion

	boundary, welding procedure No.1 [heat input of the 3^{10} pass =1.2	
	KJ/mm]	57
Fig.4.6	Microstructure across fusion boundary where eight points were chosen for	
	EDX, welding procedure No.1 [heat input of the 3^{rd} pass = 1.2 KJ/mm]	58
Fig.4.7	Schaeffler diagram used for prediction of microstructure of the ten chosen	
	points [as calculated in Table 4.5]	58
Fig.4.8	T_{Ms} profile across transition zone, welding procedure No.1 [heat input of	7 0
F: 4.0	the 3 rd pass =1.2 KJ/mm]	58
Fig.4. 9	SEM image of martensitic layer between second inconel pass and	
	APIX65, welding procedure No.1 [heat input of the 3 rd pass =1.2 KJ/mm].	59
Fig.4.10	Average thickness of martensitic layer in the third pass (carbon steel),	
	welding procedure No.1 [heat input of the 3 rd pass =1.2 KJ/mm]	60
Fig.4.11	Martensitic structure as observed by SEM at point 9, welding procedure	
	No.1 [heat input of the 3 rd pass =1.2 KJ/mm]	60
Fig.4.12	Martensitic structure as observed by SEM at point 10, welding procedure	
	No.1 [heat input of the 3^{rd} pass =1.2 KJ/mm]	60
Fig.4.13	Schematic diagram of Type II boundary formation	63
Fig.4.14	Type II grain boundary parallel to Fusion Boundary, welding procedure	
	No.1 [heat input of the 3 rd pass =1.2 KJ/mm]	63
Fig.4.15	SEM showing Type II grain boundary parallel to Fusion Boundary,	
	welding procedure No.1 [heat input of the 3 rd pass =1.2 KJ/mm]	64
Fig.4.16	Schematic diagram shows Type II boundary formation Mechanism during	
	welding	64
Fig.4.17	Interfacial cracks along grain boundary type II-etched with mixed acids,	
	welding procedure No.1 [heat input of the 3rd pass =1.2 KJ/mm]	64
Fig.4.18	Microhardness profile across the third pass, welding procedure No.2	
	[Preheated at 200°C, baking at 280°C, heat input of the 3 rd pass =1.2	
	KJ/mm]	65
Fig.4.19	Interfacial crack parallel to fusion boundary -etched with picric acid,	
	welding procedure No.2 [Preheated at 200°C, baking at 280°C, and heat	
	input of the 3 rd pass =1.2 KJ/mm]	65
Fig.4.20	Interfacial crack along grain boundary type II and fusion parallel to	
	boundary -etched with mixed acids, welding procedure No.2 [Preheated	

	at 200° C, baking at 280° C, heat input of the 3^{rd} pass =1.2 KJ/mm]	63
Fig.4.21	Beaches, peninsulas and islands of low carbon steel filler metal in the	
	second inconel pass, welding procedure No.1, [heat input of the 3 rd pass	
	=1.2 KJ/mm]	60
Fig.4.22	SEM and EDX analyses for macrosegregation, welding procedure No.1	
	[heat input of the 3^{rd} pass =1.2 KJ/mm]	6
Fig.4.23	Mechanism for macrosegregation formation caused by a partially mixed	
	filler metal where $T_{LW} > T_{LB}$ — longitudinal cross section of weld pool	6
Fig.4.24	Schematic diagram illustrates the idea of using martensite formed in 3 rd	
	pass to prevent cracking along type II boundary in 2 nd pass: "X"	
	longitudinal, "Y" transverse and "Z" through thickness	69
Fig.4.25	Relation between elastic modulus and temperature for stainless steel	6
Fig.4.26	Schematic diagram demonstrates the effect of lowering T_{Ms} on stresses at	
	fusion boundary	7
Fig.4.27	EDX mapping of Iron, Nickel, Chromium, Aluminium and Nitrogen	7
Fig.4.28	Prior austenite grain boundaries of the third pass for grain refined method	
	- etched with vilella's reagent	7
Fig.4.29	Thickness of the third pass, welding procedure No.3 [heat input of the 3 rd	
	pass = 1.4 KJ/mm]	7
Fig.4.30	Microhardness profile across the third pass, welding procedure No.3 [heat	
	input of the 3 rd pass =1.4 KJ/mm]	7:
Fig.4.31	EDX analyses and calculated dilution levels virus distance from fusion	
	boundary, welding procedure No.3 [heat input of the 3^{rd} pass =1.4	
	KJ/mm]	7
Fig.4.32	T_{Ms} profile across transition zone, welding procedure No.3 [heat input of	
	the 3 rd pass =1.4 KJ/mm]	7
Fig.4.33	Grain boundary type II appeared without cracks, welding procedure No.3	
	[heat input of the 3 rd pass =1.4 KJ/mm]	7
Fig.4.34	Macrosegregation zones parallel to fusion boundary for the third pass of	
	procedure No.3 [heat input of the 3^{rd} pass =1.4 KJ/mm]	
	a) Optical microscope b) SEM c) EDX	7
Fig.4.35	Microhardness profile across the third pass, welding procedure No.4 [heat	
	input of the 3 rd pass =2.1 KJ/mm]	8

Fig.4.36	EDX analyses and calculated dilution levels virus distance from fusion	
	boundary, welding procedure No.4 [heat input of the 3^{rd} pass =2.1	
	KJ/mm]	81
Fig.4.37	T_{Ms} profile across transition zone, welding procedure No.4 [heat input of	
	the 3^{rd} pass =2.1 KJ/mm]	81
Fig.4.38	Planar solidification region disappeared and cellular structure continued	
	until fusion boundary, welding procedure No.4 [heat input of the 3 rd pass	
	=2.1 KJ/mm]	81
Fig.4.39	Parts from filler were forced inside the second inconel pass forming	
	martensitic island with cracks, welding procedure No.4 [heat input of the	
	3 rd pass =2.1 KJ/mm]	82
Fig.4.40	SEM and EDX for filler metal islands within the second inconel pass,	
	welding procedure No.4 [heat input of the 3 rd pass =2.1 KJ/mm]	83
Fig.4.41	Cracked type II boundary parallel to filler metal islands within the second	
	inconel pass, welding procedure No.4 [heat input of the 3 rd pass =2.1	
	KJ/mm]	83
Fig.4.42	Microhardness profile across the third pass, procedure No.5 [grain	
	refining method- heat input of the 3^{rd} pass =1.3 KJ/mm]	84
Fig.4.43	EDX analyses and calculated dilution levels virus distance from fusion	
	boundary, procedure No5 [grain refining method- heat input of the 3 rd	
	pass =1.3 KJ/mm]	85
Fig.4.44	T_{Ms} profile across transition zone, procedure No5 [grain refining method-	
	heat input of the 3^{rd} pass =1.3 KJ/mm]	85
Fig.4.45	Type II boundary disappeared and cellular structure continued until fusion	
	boundary, procedure No5 [grain refining method- heat input of the 3 rd	
	pass =1.3 KJ/mm]	86
Fig.4.46	Procedure No.3 (Dilution Method - heat input of the 3 rd pass =1.4KJ/mm)	
	a) – Microstructure b) – Microhardness	89
Fig.4.47	Procedure No.5 (Grain Refining Method - heat input of the 3 rd pass	
	=1.4KJ/mm) a) – Microstructure b) – Microhardness	90
Fig.4.48	Microstructure at transition zone between 3 rd and 4 th passes, procedure	
	No.6 [heat input of the fourth pass =1.2KJ/mm] a) - Cracked type II boundary – etched by mixed acids (equal parts of	
	HCL, HNO ₃ , and acetic acids)	