

# AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

# **Effective Width for Steel-Light Weight Concrete Composite Girders**

Thesis

Submitted in partial fulfillment of the requirements for the degree of

### **Doctor of Philosophy**

in

Civil Engineering (Structures)

by

### **Mahmoud Ramzy Mahmoud Lasheen**

Supervised by

### Prof. Ayman Hussein Hosny Khalil

Professor of Reinforced Concrete Structures Ain Shams University

#### Dr. Amr Abdel Salam Shaat

Associate Professor Ain Shams University

Ain Shams University Cairo - 2017

Copy right © Mahmoud R. Lasheen, 2017

# Thesis: Effective Width for Steel-Light Weight Concrete Composite Girders

Submitted by: Eng. Mahmoud Ramzy Lasheen

### EXAMINERS COMMITEE

Signature

#### Prof. Fouad S. Fanous

Professor of Reinforced Concrete Structures Faculty of Engineering Towa State University

Prof. Amr Hussein Abdel Azim Zahir

Professor of Reinforced Concrete Structures
Faculty of Engineering Ain Shams University

Prof. Ayman Hussein Hosny Khalil

Professor of Reinforced Concrete Structures Faculty of Engineering – Ain Shams University

Dr. Amr Abdel Salam Shaat

Associate Professor

Faculty of Engineering – Ain Shams University

Date: 20/2/2017

### **AUTHOR**

Name : Mahmoud Ramzy Mahmoud Lasheen

Date of birth : 01 December 1985

Place of birth : Cairo, Egypt

Academic Degree: B.Sc. & M.Sc. in Structural Engineering

University : Ain Shams University

Date : July 2007 – May 2011

Grade : Distinction with honor degree

Current job : Lecturer Assistant- HBRC

**STATEMENT** 

This thesis is submitted to Ain Shams University in partial

fulfillment of the requirements for the degree of Doctor of

Philosophy in Civil Engineering (Structural).

The work included was carried out by the author at reinforced

concrete lab of the faculty of engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a

qualification at any other university or institution.

Date : 20/2/2017

Name : Mahmoud Ramzy Mahmoud Lasheen

Signature: Mahmoud Lasheen

First and foremost, I thank God through whom all things are possible. I would like to express my deepest gratitude to my supervisors, Dr. Ayman Hussein and Dr. Amr Shaat, for their unwavering support and guidance throughout this research. Their patience, leadership, and endless encouragement gave me the confidence and persistence to complete my research journey. I owe them an unbelievable amount of gratitude for their prominent role in helping me to achieve a major milestone in my career.

I would like to express my thanks to the concrete laboratory staff, Mr. Ahmed Amer, Mr. Mohamed El Tobogy, Mrs Magda and Mr. Mohamed. Also, special thanks go to Eng. Maged Farouk, who helped me in beams fabrication at El SOADAA Factory. The support of Dr. Hadad Said Hadad, Director of the concrete institute, Housing and Building National research center, significantly contributed to my success.

I would also like to recognize and thank my spouse, Shereen, for believing in me and for encouraging me to complete this work. Many thanks to my mother and grandmother, for their care and support since I started Ph.D. Special thanks go to my father, Eng. Ramzy Lasheen, my role model, for his technical and financial support. Also, I would like to present special thanks to Dr. Osama Hamdy, my father in law, who always acted as a precursor to me. At last but by no means the least, I would also like to acknowledge my children, Youssef and Farida, for their innocent and kind smiles that eased the long nights of work.

## TABLE OF CONTENTS

| TABL   | E OF CO   | ONTENTS                                                     | vi    |
|--------|-----------|-------------------------------------------------------------|-------|
| LIST ( | OF FIGU   | RES                                                         | xi    |
| LIST ( | OF TAB    | LES                                                         | xvi   |
| NOTA   | TION      |                                                             | xviii |
| ABST   | RACT      |                                                             | xxi   |
| Chan   | ter 1 Tı  | ntroduction                                                 | 2     |
| _      |           |                                                             |       |
| 1.1    | jeneral . |                                                             | 2     |
| 1.2 F  | Research  | scope and objectives                                        | 5     |
| 1.3    | Thesis ou | ıtline                                                      | 6     |
| Chap   | ter 2 L   | iterature Review                                            | 10    |
| _      |           | ion                                                         |       |
|        |           |                                                             |       |
|        |           | and to lightweight concrete                                 |       |
| 2.2.1  | Def       | inition of LWC                                              | 12    |
| 2.2.2  | Eco       | onomy of LWC                                                | 13    |
| 2.2.3  | Me        | chanical properties of LWAC                                 | 15    |
|        |           | Compressive strength                                        |       |
|        |           | Modulus of elasticity                                       |       |
|        |           | Stress-strain relationship<br>Cracking and tensile strength |       |
| 2.2.4  |           |                                                             |       |
|        |           | chanical properties of foamed concrete                      |       |
|        |           | Tensile strength                                            |       |
|        |           | Modulus of elasticity                                       |       |
| 2.2.5  |           | des provisions for Young's modulus of LWC                   |       |
| 2.2.6  | Inn       | ovative mix design for current LWC                          | 22    |
| 2.3    | Composi   | te action between LWC and steel beam                        | 23    |
| 2.3.1  | Pus       | h-out test                                                  | 25    |
| 2.3.2  | Неа       | aded stud shear connectors                                  | 26    |
| 2.3.3  | Cha       | annel shear connectors                                      | 28    |

| 2.4   | Ductility                                           | 32 |
|-------|-----------------------------------------------------|----|
| 2.4.1 | Ductility of lightweight concrete elements          | 33 |
| 2.4.2 | Ductility of steel-concrete composite elements      | 36 |
| 2.5   | Effective concrete slab width for SCC beams         | 38 |
| 2.5.1 | Effective slab width definition                     | 39 |
| 2.5.2 | Codes provisions for the effective slab width       | 40 |
| 2.6   | Effect of composite action on SCC beams stiffness   | 40 |
| 2.6.1 | Total horizontal shear force                        | 41 |
| 2.6.2 | Codes provision for the effective moment of inertia | 42 |
| 2.7   | Need for the current research                       | 43 |
| Cha   | pter 3 Experimental Program                         | 50 |
| 3.1   | Introduction                                        | 50 |
| 3.2   | Tested beams details                                | 51 |
| 3.3   | Material properties                                 | 54 |
| 3.3.1 | Concrete                                            | 54 |
| 3.3.2 | Hot-rolled steel sections                           | 54 |
| 3.3.3 | Steel reinforcement                                 | 55 |
| 3.4   | Formwork                                            | 55 |
| 3.5   | Fabrication of test specimens                       | 55 |
| 3.6   | Test setup and loading program                      | 56 |
| 3.7   | Instrumentation                                     | 56 |
| Cha   | pter 4 Experimental Results                         | 68 |
| 4.1   | Introduction                                        | 68 |
| 4.2   | Observations of tested beams                        | 69 |
| 4.3   | Effect of concrete type (Beams N1 and L1)           | 72 |
| 4.3.1 | Flexural behaviour                                  | 72 |
| 4.3.2 | Failure modes                                       | 74 |
| 44    | Effect of slab width (Beams I.2 and I.3)            | 75 |

| 76<br>78   |
|------------|
| 78         |
|            |
| 78         |
| 78         |
| 79         |
| 79         |
| 80         |
| 1)96       |
| 96         |
| 96         |
| 97         |
| 99         |
| 99         |
| 100        |
| 100        |
| 101        |
| 102        |
| 103        |
| 103        |
| 105        |
| 120        |
| 120        |
| 122        |
| 123        |
| 123        |
| 124        |
| 124        |
| 125<br>126 |
|            |

| 6.4   | Intera             | ctions                                            | . 126 |
|-------|--------------------|---------------------------------------------------|-------|
| 6.4.1 | (                  | Contact between concrete and steel reinforcement  | . 126 |
| 6.4.2 | . (                | Contact between concrete slab and shear connector | . 127 |
| 6.4.3 | (                  | Contact between concrete slab and steel beam      | . 128 |
| 6.4.4 |                    | Contact in welding regions                        | . 128 |
| 6.5   | Loadi              | ng and boundary conditions                        | . 128 |
| 6.5.1 | ]                  | planes of symmetry                                | . 128 |
| 6.5.2 |                    | Applied loads                                     | . 129 |
| 6.5.3 | ;                  | Support modeling                                  | . 129 |
| 6.6   | Valida             | ation of finite element model                     | . 130 |
| 6.6.1 | -                  | Introduction                                      | . 130 |
| 6.6.2 |                    | Strength of beams                                 | . 130 |
| 6.6.3 | ]                  | Load-deflection behaviour                         | . 131 |
| 6.6.4 |                    | Tensile steel strain $(\varepsilon_{s3})$         | . 132 |
| 6.6.5 | (                  | Compressive concrete strain $(\epsilon_{c1})$     | . 133 |
| 6.6.6 |                    | Interface slip behaviour                          | . 133 |
| 6.6.7 | ]                  | Failure Modes                                     | . 134 |
|       | 6.6.7.1            | Compression damage                                |       |
|       | 6.6.7.2<br>6.6.7.3 | $\epsilon$                                        |       |
| 6.6.8 |                    | Model validity                                    |       |
|       |                    | ·                                                 |       |
| Cha   | pter 7             | 7 Parametric Study & Design Guidelines            | 166   |
| 7.1   | Introd             | uction                                            | . 166 |
| 7.2   | Mater              | ial properties                                    | . 167 |
| 7.2.1 | ;                  | Steel properties                                  | . 167 |
| 7.2.2 | . (                | Concrete properties                               | . 168 |
| 7.3   | Result             | ts                                                | . 168 |
| 7.3.1 | ]                  | Effect of concrete type on SCC beams behaviour    | . 171 |
|       | 7.3.1.1            |                                                   |       |
|       | 7.3.1.2            | Strength                                          | . 172 |
| 7.4   | Design             | n guidelines                                      | . 173 |
| 7.4.1 | ]                  | Effective slab width                              | .173  |

|                          | 7.4.1.1                       | Effective slab width at service loads (B <sub>es</sub> )         | 174                      |
|--------------------------|-------------------------------|------------------------------------------------------------------|--------------------------|
|                          | 7.4.1.1.1                     | Validation of the proposed equation for (Bes) against the exp    | erimental                |
|                          | results                       |                                                                  | 178                      |
|                          | 7.4.1.1.2                     | Codes comparison for the (B <sub>es</sub> )                      | 179                      |
|                          | 7.4.1.1.3                     | Effect of the (Bes) on the value of the moment of inertia        | 180                      |
|                          | 7.4.1.2                       | Effective width at ultimate loads (Beu)                          | 181                      |
|                          | 7.4.1.2.1                     | Validation of the proposed equation for the (B <sub>eu</sub> )   | 183                      |
|                          | 7.4.1.2.2                     | Codes comparison for the (B <sub>eu</sub> )                      | 183                      |
|                          | 7.4.1.2.3                     | Effect of the (B <sub>eu</sub> ) on the ultimate load capacity   | 184                      |
| 7.4.                     | 2 Sli                         | ip at the steel-concrete interface                               | 185                      |
|                          |                               | Effect of slip at the steel-concrete interface on the value of m |                          |
|                          |                               |                                                                  |                          |
|                          |                               |                                                                  |                          |
|                          |                               |                                                                  |                          |
| Ch                       | apter 8 S                     | Summary & Conclusions                                            | 229                      |
| <b>Ch</b> 8.1            | •                             | Summary & Conclusions                                            |                          |
| 8.1                      | Summar                        | y                                                                | 229                      |
|                          | Summar                        | •                                                                | 229                      |
| 8.1                      | Summar<br>Conclus             | y                                                                | 229                      |
| 8.1<br>8.2<br>8.3        | Summar<br>Conclus<br>Suggesti | ions                                                             | 229<br>231<br>234        |
| 8.1<br>8.2<br>8.3<br>REI | Summar Conclus Suggesti       | ions                                                             | 229<br>231<br>234<br>235 |
| 8.1<br>8.2<br>8.3<br>REI | Summar Conclus Suggesti       | ions                                                             | 229<br>231<br>234<br>235 |

### LIST OF FIGURES

| Figure 2.1 – Approximate unit weight and classification of lightweight aggregate                      |      |
|-------------------------------------------------------------------------------------------------------|------|
| concrete (Asgeirsson 1994)                                                                            |      |
| Figure 2.2 – Failure modes for concrete with (a) normal weight aggregate                              |      |
| Figure 2.3 – Stress-strain relationship of NWC and LWC (Jian C et. al. 2014)                          |      |
| Figure 2.4 – Channel rigid shear connector (Eurocode 4; CEN 2001)                                     | . 45 |
| Figure 2.5 – Parameters of rigid shear connectors (Eurocode 4; CEN 2001)                              | . 45 |
| Figure 2.6 – Alternative dispositions for the push-out test (EN 1994-1-1)                             |      |
| Figure 2.7 – Push-out test specimens tested by various authors                                        | . 47 |
| Figure 2.8 – Push-out test setup for early ages concrete (Cem Topkaya, 2004)                          | .48  |
| Figure 3.1 – Dimensions of Test Specimens.                                                            | . 60 |
| Figure 3.2 – Steel cross sections used in the experimental investigation                              | . 60 |
| Figure 3.3 – Splitting tensile test.                                                                  | . 60 |
| Figure 3.4 – Compressive strength and Young's modulus test.                                           | .61  |
| Figure 3.5 – Coupon cut after the tension test.                                                       | . 61 |
| Figure 3.6 – Wooden formwork for the SCC beams                                                        | . 62 |
| Figure 3.7 –Welding process.                                                                          | . 63 |
| Figure 3.8 – Details of steel reinforcement mesh.                                                     | . 63 |
| Figure 3.9 – Pouring concrete.                                                                        | . 64 |
| Figure 3.10 – Test setup.                                                                             | . 64 |
| Figure 3.11 – Distributer beam supports.                                                              | . 65 |
| Figure 3.12 – Measurement tools used in the experiment.                                               | . 65 |
| Figure 3.13 – Top view of the concrete slab.                                                          | . 66 |
| Figure 3.14 – Mid-span cross section for all beams.                                                   | . 66 |
| Figure 4.1 – Stress-strain distribution along beam depth.                                             | . 84 |
| Figure 4.2 - Comparison between experimental (I <sub>E1</sub> ) and calculated moment of inertia      | a    |
| (I <sub>e</sub> ) values                                                                              | . 84 |
| Figure 4.3 – Load versus strains at the steel lower flange ( $\varepsilon_{s3}$ ) for beams N1 and L1 | . 85 |
| Figure 4.4 – Load versus strains at the steel lower flange ( $\varepsilon_{s3}$ ) for beams L2 and L3 | . 85 |
| Figure 4.5 – Load versus strains at the steel lower flange ( $\varepsilon_{s3}$ ) for beams L4 and L5 | . 86 |
| Figure 4.6 – Load versus strains at the steel lower flange ( $\varepsilon_{s3}$ ) for beams L6 and L7 | . 86 |
| Figure 4.7 – Load-deflection response of beams N1 and L1                                              | . 87 |
| Figure 4.8 – Load-deflection response of beams L2 and L3.                                             | . 87 |
| Figure 4.9 – Load-deflection response of beams L4 and L5.                                             | . 88 |
| Figure 4.10 – Load-deflection response of beams L6 and L7.                                            | . 88 |
| Figure 4.11 – Load versus upper and lower strains ( $\varepsilon_{c1}$ , $\varepsilon_{c5}$ ) of      | . 89 |
| Figure 4.12 – Load versus upper and lower strains ( $\varepsilon_{c1}$ , $\varepsilon_{c5}$ ) of      | . 89 |
| Figure 4.13 – Load versus upper and lower strains ( $\varepsilon_{c1}$ , $\varepsilon_{c5}$ ) of      |      |
| Figure 4.14 – Load versus upper and lower strains ( $\varepsilon_{c1}$ , $\varepsilon_{c5}$ ) of      |      |
| Figure 4.15 – Typical failure modes of all tested specimens                                           |      |
| Figure 4.16– Load versus slip of concrete slab for all beams                                          | .93  |

| Figure 4.17– Strain distribution along the width of the concrete slabs of beams L2 a  | and |
|---------------------------------------------------------------------------------------|-----|
| L3 at mid-span.                                                                       | 94  |
| Figure 5.1– Constitutive material models.                                             | 108 |
| Figure 5.2– Establishing the load-deflection curve.                                   | 109 |
| Figure 5.3– Experimental versus predicted load-deflection response of beam N1         | 109 |
| Figure 5.4– Experimental versus predicted load-deflection response of beam L1         |     |
| Figure 5.5– Experimental versus predicted load-deflection response of beam L2         |     |
| Figure 5.6– Experimental versus predicted load-deflection response of beam L3         |     |
| Figure 5.7– Experimental versus predicted load-deflection response of beam L4         |     |
| Figure 5.8– Experimental versus predicted load-deflection response of beam L5         | 112 |
| Figure 5.9– Experimental versus predicted load-deflection response of beam L6         |     |
| Figure 5.10– Experimental versus predicted load-deflection response of beam L7        |     |
| Figure 5.11– Effective width of beams N1 and L1 at different load levels              | 113 |
| Figure 5.12- Effective width of beams L2 and L3 at different load levels              | 114 |
| Figure 5.13– Effective width of beams L4 and L5 at different load levels              | 114 |
| Figure 5.14– Effective width of beams L6 and L7 at different load levels              | 115 |
| Figure 5.15- Neutral axis depth of beams N1 and L1 at different load levels           | 115 |
| Figure 5.16- Neutral axis depth of beams L2 and L3 at different load levels           | 116 |
| Figure 5.17- Neutral axis depth of beams L4 and L5 at different load levels           | 116 |
| Figure 5.18- Neutral axis depth of beams L6 and L7 at different load levels           | 117 |
| Figure 5.19- Effect of steel beam slenderness ratio on the effective width            | 117 |
| Figure 5.20– Slip value at ultimate load versus shear connection ( $\Sigma Q_n/C_f$ ) | 118 |
| Figure 6.1 – Quarter model of the SCC beams.                                          | 140 |
| Figure 6.2 – Finite element mesh of the one-quarter SCC beam                          | 140 |
| Figure 6.3 – Internal steel reinforcement bars used in models.                        |     |
| Figure 6.4 – Bilinear stress-strain curve for steel.                                  |     |
| Figure 6.5 – Uniaxial compressive stress-strain behaviour of NWC and LWC              | 142 |
| Figure 6.6 – Stress-strain curve for NWC and LWC in tension.                          | 142 |
| Figure 6.7 – Damage variable for uniaxial compression.                                | 143 |
| Figure 6.8 – Damage variable for uniaxial tension.                                    | 143 |
| Figure 6.9 – Host and embedded regions in finite element program                      | 144 |
| Figure 6.10 – Contact between the concrete slab and shear connector                   | 144 |
| Figure 6.11 – Contact between concrete slab and steel beam                            | 145 |
| Figure 6.12 – Contact between shear connectors and steel beam.                        | 145 |
| Figure 6.13 – Experimental versus FE in terms of failure loads.                       | 146 |
| Figure 6.14 – Load-deflection behaviour for beam N1.                                  | 146 |
| Figure 6.15 – Load-deflection behaviour for beam L1.                                  | 147 |
| Figure 6.16 – Load-deflection behaviour for beam L2.                                  |     |
| Figure 6.17 – Load-deflection behaviour for beam L3.                                  | 148 |
| Figure 6.18 – Load-deflection behaviour for beam L4.                                  | 148 |
| Figure 6.19 – Load-deflection behaviour for beam L5.                                  | 149 |
| Figure 6.20 – Load-deflection behaviour for beam L6                                   | 149 |

| Figure 6.21 – Load-deflection behaviour for beam L7.                                 | 150 |
|--------------------------------------------------------------------------------------|-----|
| Figure 6.22 – Load versus mid-span strain at steel lower flange for beam N1          | 150 |
| Figure 6.23 – Load versus mid-span strain at steel lower flange for beam L1          | 151 |
| Figure 6.24 – Load versus mid-span strain at steel lower flange for beam L2          | 151 |
| Figure 6.25 – Load versus mid-span strain at steel lower flange for beam L3          | 152 |
| Figure 6.26 – Load versus mid-span strain at steel lower flange for beam L4          | 152 |
| Figure 6.27 – Load versus mid-span strain at steel lower flange for beam L5          | 153 |
| Figure 6.28 – Load versus mid-span strain at steel lower flange for beam L6          | 153 |
| Figure 6.29 – Load versus mid-span strain at steel lower flange for beam L7          | 154 |
| Figure 6.30 – Load versus mid-span upper strain of concrete slab for beam N1         | 154 |
| Figure 6.31 – Load versus mid-span upper strain of concrete slab for beam L1         | 155 |
| Figure 6.32 – Load versus mid-span upper strain of concrete slab for beam L2         | 155 |
| Figure 6.33 – Load versus mid-span upper strain of concrete slab for beam L3         | 156 |
| Figure 6.34 – Load versus mid-span upper strain of concrete slab for beam L4         | 156 |
| Figure 6.35 – Load versus mid-span upper strain of concrete slab for beam L5         | 157 |
| Figure 6.36 – Load versus mid-span upper strain of concrete slab for beam L6         | 157 |
| Figure 6.37 – Load versus mid-span upper strain of concrete slab for beam L7         | 158 |
| Figure 6.38 – Load versus slip of concrete slab for beam N1.                         | 158 |
| Figure 6.39 – Load versus slip of concrete slab for beam L1                          | 159 |
| Figure 6.40 – Load versus slip of concrete slab for beam L2                          | 159 |
| Figure 6.41 – Load versus slip of concrete slab for beam L3                          | 160 |
| Figure 6.42 – Load versus slip of concrete slab for beam L4.                         | 160 |
| Figure 6.43 – Load versus slip of concrete slab for beam L5                          | 161 |
| Figure 6.44 – Load versus slip of concrete slab for beam L6                          | 161 |
| Figure 6.45 – Load versus slip of concrete slab for beam L7.                         | 162 |
| Figure 6.46 – Typical concrete crushing.                                             | 162 |
| Figure 6.47 – Typical longitudinal cracks.                                           | 163 |
| Figure 6.48 – Typical underside cracks.                                              | 163 |
| Figure 6.49 – Typical Horizontal slip.                                               | 164 |
| Figure 7.1 – All variables of the parametric study                                   | 219 |
| Figure 7.2 – Load versus mid-span deflection for beams B1 to B12.                    |     |
| Figure 7.3 – Load versus lower steel strain for beams B1 to B12.                     |     |
| Figure 7.4 – Load versus upper concrete strain for beams B1 to B12                   |     |
| Figure 7.5 – Load versus slip value at interface for beams B1 to B12                 |     |
| Figure 7.6 – Strain distribution along beam depth at service loads                   |     |
| Figure 7.7 – Stress distribution along slab thickness.                               |     |
| Figure 7.8 – Effect of concrete type on beams stiffness.                             |     |
| Figure 7.9 – Effect of concrete type on ultimate load capacity.                      |     |
| Figure 7.10 – Effect of $(I_E/I_s)$ on beams ultimate load                           |     |
| Figure 7.11 – Effective concrete slab width at two different loading levels          |     |
| Figure 7.12 – Effect of steel beam slenderness ratio on the effective width          |     |
| Figure 7.13 – The factor "K" against the slab width-to-span ratio ( $B_s/L$ )        |     |
| Figure 7.14 – FEA versus exp. work for effective width at service loads ( $B_{es}$ ) |     |
| 1                                                                                    |     |

| Figure 7.15 – Comparison for the effective width at service loads (Bes) with codes             |     |
|------------------------------------------------------------------------------------------------|-----|
| provisions                                                                                     | 226 |
| Figure 7.16 – Effective slab width at ultimate loads (B <sub>eu</sub> )                        | 226 |
| Figure 7.17 – Comparison of the effective width at ultimate load (B <sub>eu</sub> ) with codes |     |
| provisions                                                                                     | 227 |
| Figure 7.18 – Slip value at 0.20f <sub>c</sub> ` for all beams.                                | 227 |
| Figure A.1 – Load versus mid-span deflection for beams B13 to B24                              | 247 |
| Figure A.2 – Load versus mid-span deflection for beams B25 to B36                              |     |
| Figure A.3 – Load versus mid-span deflection for beams B37 to B48                              |     |
| Figure A.4 – Load versus mid-span deflection for beams B49 to B60                              |     |
| Figure A.5 – Load versus mid-span deflection for beams B61 to B72                              |     |
| Figure A.6 – Load versus mid-span deflection for beams B73 to B84                              |     |
| Figure A.7 – Load versus mid-span deflection for beams B85 to B96                              |     |
| Figure A.8 – Load versus mid-span deflection for beams B97 to B108                             |     |
| Figure A.9 – Load versus mid-span deflection for beams B109 to B120                            |     |
| Figure A.10 – Load versus mid-span deflection for beams B121 to B132                           |     |
| Figure A.11 – Load versus mid-span deflection for beams B133 to B144                           |     |
| Figure A.12 – Load versus mid-span deflection for beams B145 to B156                           |     |
| Figure A.13 – Load versus mid-span deflection for beams B157 to B168                           |     |
| Figure A.14 – Load versus mid-span deflection for beams B169 to B180                           |     |
| Figure A.15 – Load versus mid-span deflection for beams B181 to B192                           |     |
| Figure A.16 – Load versus mid-span deflection for beams B193 to B204                           |     |
| Figure A.17 – Load versus mid-span deflection for beams B205 to B216                           |     |
| Figure A.18 – Load versus lower steel strain for beams B13 to B24.                             |     |
| Figure A.19 – Load versus lower steel strain for beams B25 to B36                              |     |
| Figure A.20 – Load versus lower steel strain for beams B37 to B48.                             |     |
| Figure A.21 – Load versus lower steel strain for beams B49 to B60.                             |     |
| Figure A.22 – Load versus lower steel strain for beams B61 to B72.                             | 257 |
| Figure A.23 – Load versus lower steel strain for beams B73 to B84.                             | 258 |
| Figure A.24 – Load versus lower steel strain for beams B85 to B96.                             | 258 |
| Figure A.25 – Load versus lower steel strain for beams B97 to B108                             | 259 |
| Figure A.26 – Load versus lower steel strain for beams B109 to B120                            | 259 |
| Figure A.27 – Load versus lower steel strain for beams B121 to B132                            | 260 |
| Figure A.28 – Load versus lower steel strain for beams B133 to B144                            | 260 |
| Figure A.29 – Load versus lower steel strain for beams B145 to B156                            | 261 |
| Figure A.30 – Load versus lower steel strain for beams B157 to B168                            | 261 |
| Figure A.31 – Load versus lower steel strain for beams B169 to B180                            | 262 |
| Figure A.32 – Load versus lower steel strain for beams B181 to B192                            | 262 |
| Figure A.33 – Load versus lower steel strain for beams B193 to B204                            | 263 |
| Figure A.34 – Load versus lower steel strain for beams B205 to B216                            | 263 |
| Figure A.35 – Load versus upper concrete strain for beams B13 to B24                           | 264 |
| Figure A.36 – Load versus upper concrete strain for beams B25 to B36                           | 264 |
| Figure A.37 – Load versus upper concrete strain for beams B37 to B48                           | 265 |

| Figure A.38 – Load versus upper concrete strain for beams B49 to B60265          |
|----------------------------------------------------------------------------------|
| Figure A.39 – Load versus upper concrete strain for beams B61 to B72266          |
| Figure A.40 – Load versus upper concrete strain for beams B73 to B84266          |
| Figure A.41 – Load versus upper concrete strain for beams B85 to B96267          |
| Figure A.42 – Load versus upper concrete strain for beams B97 to B108267         |
| Figure A.43 – Load versus upper concrete strain for beams B109 to B120268        |
| Figure A.44 – Load versus upper concrete strain for beams B121 to B132268        |
| Figure A.45 – Load versus upper concrete strain for beams B133 to B144269        |
| Figure A.46 – Load versus upper concrete strain for beams B145 to B156269        |
| Figure A.47 – Load versus upper concrete strain for beams B157 to B168270        |
| Figure A.48 – Load versus upper concrete strain for beams B169 to B180270        |
| Figure A.49 – Load versus upper concrete strain for beams B181 to B192271        |
| Figure A.50 – Load versus upper concrete strain for beams B193 to B204271        |
| Figure A.51 – Load versus upper concrete strain for beams B205 to B216272        |
| Figure A.52 – Load versus slip value at the interface for beams B13 to B24 272   |
| Figure A.53 – Load versus slip value at the interface for beams B25 to B36273    |
| Figure A.54 – Load versus slip value at the interface for beams B37 to B48273    |
| Figure A.55 – Load versus slip value at the interface for beams B49 to B60 274   |
| Figure A.56 – Load versus slip value at the interface for beams B61 to B72 274   |
| Figure A.57 – Load versus slip value at the interface for beams B73 to B84275    |
| Figure A.58 – Load versus slip value at the interface for beams B85 to B96275    |
| Figure A.59 – Load versus slip value at the interface for beams B97 to B108      |
| Figure A.60 – Load versus slip value at the interface for beams B109 to B120 276 |
| Figure A.61 – Load versus slip value at the interface for beams B121 to B132 277 |
| Figure A.62 – Load versus slip value at the interface for beams B133 to B144 277 |
| Figure A.63 – Load versus slip value at the interface for beams B145 to B156 278 |
| Figure A.64 – Load versus slip value at the interface for beams B157 to B168 278 |
| Figure A.65 – Load versus slip value at the interface for beams B169 to B180 279 |
| Figure A.66 – Load versus slip value at the interface for beams B181 to B192 279 |
| Figure A.67 – Load versus slip value at the interface for beams B193 to B204 280 |
| Figure A.68 – Load versus slip value at the interface for beams B205 to B216 280 |