AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING IRRIGATION AND HYDRAULICS DEPARTMENT

EFFECT OF NEW RECLAMATION LAND ON THE GROUNDWATER POTENTIALITY

BY

OSAMA MOHAMMED AHMED GAAME

(B.So.in Civil Engineering, Alexandaria University)

A Thesis

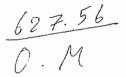
Submitted in Partial Fulfillment of the Requirments For the

Degree of Master of Science in Civil Engineering (Irrigation & Hydraulics)

Supervised By

Prot. Dr. M. EL-NIAZI HAMMAD Prof. of Iterigation and Hydraullo and Vice-Deen of the Faculty of of Engineering, Ain Shama University, Cairo

Assoc. Prot. M.M. NOUR EL-DIN


Irrigation and Hydrautica Departemnt Faculty of Engineering, Ain Shama University, Cairo

Dr. AHMED A.A. HASSAN Irrigation and Hydraullo Departement Faculity of Engineering, Ain Shame University, Cairo

1994

Dr. Falma A. ABDEL-RAHMAN

Director of Research Institute

For Groundwaler

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING IRRIGATION AND HYDRAULICS DEPARTMENT

EFFECT OF NEW RECLAMATION LAND ON THE GROUNDWATER POTENTIALITY

BY

OSAMA MOHAMMED AHMED GAAME

(B.Sc.in Civil Engineering, Alexandaria University)

A Thesis

Submitted in Partial Fulfillment of the Requirments 'For the

Degree of Master of Science in CivII Engineering (Irrigation & Hydraulics)

Supervised By

Prot. Dr. M. EL-NIAZI HAMMAD
Prof. of Lirrigation and Hydraullo
and Vice-Dean of the Faculty of
of Engineering, Ain Shama University, Cairo

Dr. Fatma A. ABDEL-RAHMAN

Assoo. Prof. M.M. NOUR EL-DIN

Director of Research Institute
For Groundwaler

Irrigation and Hydraulios Departemnt Faculty of Engineering, Ain Shams University, Cairo

Dr. AHMED A.A. HASSAN

Irrigation and Hydraulio Departement

Faculty of Engineering, Ain Shama University, Cairo

1994

DEDICATION:

TO MY MOTHER

Examiners Committee

signature

Hofmy

ex. Director of Research Institute for Groudwater, Water Research Center, Minstry of Public Works and Water Resources, Cairo.

Prof. Dr. SAMEH D. ARMANIOUS

Prof. of Irrigation and Hydraulics,

Faculty of Engineering, Ain Shams

University , Cairo.

South from

3- Prof. Dr. M. EL-NIAZI HAMMAD

Prof. of Hydraulic Structures and

Vice-DEAN of the Faculty of Engineering,

Ain Shams University, Cairo.

4- Assoc. Prof. Dr. MOHAMED M. NOUR EL-DIN
Irrigation and Hydraulics Departement,
Faculty of Engineering, Ain Shams
University, Cairo.

CILIT

CHAPTER V IMPACT OF DEVLOPMENT ON THE HYDROGEOLOGICAL BALANCE

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Irrigation & Hydraulics, Ain Shams University, from to March, 1994.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date:

Signature:

Name:

Osama Mohammed Ahmed Gaame

ACKNOWLEDGEMENTS

The author wishes to thank Prof. Dr. M. EL-Niazi Hammad, Vice Dean of the Faculty of Engineering, Ain Shams University for his constant supervision and patient guidance.

I would like to express my deep appreciation and gratitude to Dr. Fatma Abdel-Rahman Attia, Director of the Research Institute of Groundwater, Water Research Center, for her valuable guidance and encouragement during the analysis of results as well as constructive comments throughout this work.

The author cannot sufficiently express his deepest gratitude to Dr. M. M. Nour EL-Dein, Irrigation & Hydraulics Department, Faculty of Engineering, Ain Shams University for transferring the art of research, accuracy and patience. He spared much of his time in fruitful and critical discussions during the witting of the manuscript.

I would like also to express my deepest gratitude to Dr. Ahmed A. A. Hassan, Lecturer, Irrigation & Hydraulics Department, Ain Shams University, for his kind supervision and valuable comments.

Thanks are also extended to Dr. Kamal Hefny, Research Institute for Groundwater, Water Research Center for his encouragement and help. My deep thanks to all the Research Institute For Groundwater staff for their help and co-operation.

Ain Shams University

Faculty of Engineering

Irrigation & Hydraulics Department

Abstract of the M.Sc. Thesis Submitted by: Eng: Osama Mohammed Ahmed Gaame

Title of the Thesis:

Effect of New Reclamation Land on the Groundwater Potentiality

Supervisors: Prof: Dr. M.EL-NIAZI HAMMAD

Dr. M. M. NOUR EL-DIN

Dr. FATMA ABDEL-RAHMAN ATTIA

Dr. AHMED A. A. HASSAN

Registration Date: Examination Date:

ABSTRACT

The study carried out on El-Tina plain, north-west of Sinai, aimed at predicting the impact of development activities on the hydrogeological balance of the area. The study was carried out in various steps, starting by defining the hydrogeology of the area and ending by predicting seepage estimation by various methods and water balances. Estimation of seepage is determined with the help of analytical, graphical and numerical methods. Results obtained from the numerical methods tend to be more due to the consideration ofcomplexity stratification of the aquifer. Due to the higher water stages in the canal results in additional recharge to the aquifer, seepage from groundwater to the canal are almost nil. This will result in additional groundwater flow to the north helping retraining the salt-water fresh-water interface. The leaching of the soil first few years of operation would add more during the percolation to the aquifer. After returning to normal water application rates, all the flow components stabilize. In General, it can be concluded that if the drains are operational conditions after full agriculture development of the area will be more favorable than the present conditions.

TABLE OF CONTENTS

	<u>Page</u>
Acknowledgments	i
Table of contents	iii
List of Figures	iv
List of tables	vi
CHAPTER I: INTRODUCTION	
1.1 Groundwater Use in Egypt	1
1.2 Objective	2
1.3 The Study Region and Problem Identification	3
1.4 Approach	3
1.5 Contents	3
CHAPTER II: LITERATURE REVIEW	6
2.1 Groundwater flow and Quality	6
2.2 Seepage	8
2.3 Sea water Intrusion in Coastal aquifers .	18
CHAPTER III: HYDROGEOLOGICAL SETTING OF THE STUDY AREA	
3.1 Geomorphology	29
3.2 Geology	31
3.3 Lithostratigraphy	31
3.4 Hydrogeology	31
3.5 Water Quality	47
CHAPTER IV: EL-TINA PLAIN HYDROGEOLOGICAL MODEL	
4.1 ANALYTICAL METHODS	50
4.3 NUMERICAL METHODS	56
CHAPTER V: IMPACT OF DEVLOPMENTS ON THE HYDROGEOLOGICAL	BALANCE
5.1 DEVLOPMENT OPTIONS	74
5.2 PREDICTIONS	76
CHAPTER VI: CONCLUSIONS AND RECOMMENDATIONS	
6.1 CONCLUSIONS	86
6.2 RECOMMENDATIONS	89
	0.0
6.3 REFERENCES	90

LIST OF FIGURES

	<u>Page</u>
Figure 1. General location of the study area	5
Figure 2. Bouwer classification for seepage condition	12
Figure 3. Geometry and Symbols for canals with a Skin Layer	
Figure 4. Illustration of Ghyben-Herzberg Relation	19
Figure 5. Depth of interface Near The Coast	
Figure 6. The Ghyben-Herzberg Principle	
Figure 7. Flow in the transition zone	. 22
Figure 8. Phreatic Groundwater replenished by rain	23
Figure 9. Confined aquifer	24
Figure 10. Semi-confined Groundwater replenished by rain	25
Figure 11. Partially confined, partially semi-confined	26
aquifer	
Figure 12. Geomorphology of North-West of Sinai	30
Figure 13. Surface geologic map of North-West of Sinai	32
Figure 14. Key map of the geological section	33
scale 1:2000000	
Figure 15. Lithostraigraphic correlation chart along A-A	34
Figure 16. Lithostraigraphic chart along line c-c	35
Figure 17. Ancient branches of the River Nile Holocene	37
Figure 18. Average annual rainfall	38
Figure 19. Location of Hydrogeological profiles	39
Figure 20. Hydrogeological cross section A-A	40
Figure 21. Hydrogeological cross section B-B	41
Figure 22. Hydrogeological cross section D-D	42
Figure 23. Contour Map For the base of the Top Clay Laver	43
Figure 24. The base map of the Quaternary aquifer	44
Figure 25. Regional Groundwater contour Map	45
Figure 26. Distribution of the Salinity of Groundwater	
in the shallow wells	48
Figure 27. Distribution of the Salinity of Groundwater	
in the deep wells	49
Figure 28. Bouwer's Graphs	54
Figure 29. Generation of Mesh	58

Figure 30. The int	erpolated of topographic contour map	61
Figure 31. The int	erpolated thickness of the Semi-confined	
layer ma	.p	62
Figure 32. The int	erpolated base of aquifer map	63
Figure 33. The int	erpolation clay resistance map	64
Figure 34. Calibra	ted Groundwater Contour Pattern	67
Figure 35. Hydraul	ic entry resistances for watercourses	72
Figure 36: The Cur	ve of accumulation water in the aquifer	
during	th 10 year Run 1	76
Figure 37. The Cur	ve of accumulation water in the aquifer	
during	th 10 year Run 2	77
Figure 38. The Cur	ve of accumulation water in the aquifer	
during	th10 year Run 3	80
Figure 39: The Cur	ve of change of storage groundwater	
in the a	quifer during th 10 year Run 4	85

LIST OF TABLES

		Page
Table	1. Geologic formations in North Sinai	36
Table	2: The hydraulic chracterstics of	
	El-Sheikh Gaber canal	51
Table	3: The cross section data of El-Tina drain	51
Table	4: The cross section data of El-Cap drain	52
Table	5. The Estimation of seepage from El-Sheikh Gaber	
	by using Bouwer equation	52
Table	6. The Estimation of seepage to El-Tina drain	
	by using Bouwer Graphs	53
Table	7: The Estimation of seepage to El-Tina drain	55
Table	8. The Estimation of seepage to El-Cap drain	
	using Bouwer Graphs	55
Table	9. The results of different analytical methods	
	of seepage calculation	53
Table	10. The Hydraulic pramters used for the calibration	59
Table	11. The difference between the calculated and measure	ed
	records	65
Table	12. Summarizes the Groundwater balance for	
	the calibration case	66
Table	13. Seepage rate along El-Sheikh Gaber canal	
	reaches in the calibration	68
Table	14.Seepage rate along El-Cap drain	
	reaches in the calibration	68
Table	15. Seepage rate along El-Tina drain	
	reaches in the calibration	69
Table	16.Comparisons between analytical solutions	
	and numerical solution.	70
Table	17. The cross section characteristics of	
	El-Sheikh Gaber canal	74
Table	18. The cross section chracterstics of	
	the canal and drains	75
	19.Summarizes the groundwater balance for runl	78
	20.Summarizes the groundwater balance for run2	81
Table	21. Summarizes the groundwater balance for run3	83

Table	22.	Summarizes the groundwater balance for run4	86
Table	23.	Impact of Devlopment options on the hydrogeologic	
		balance of El-Tina Plain (3 year)	88
Table	24.	Impact of Devlopment options on the hydrogeologic	
		balance of El-Tina Plain (10 year)	89