STUDIES ON THE PRODUCTION AND STABILITY OF BACILLUS THURINGIENSIS ENDOTOXIN

By

MAGDA ABD EL-GHAFFAR EL-BENDARY

B.Sc. (MICROBIOLOGY) AIN-SHAMS UNIVERSITY (1988)

A THESTS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE ΙN (MICROBIOLOGY)

UNDER SUPERVISION OF

PROF. DR. MOHAMED ABU-SHADY

PROF. OF MICROBIOLOGY AND VICE DEAN OF THE FACULTY OF SCIENCE FACULTY OF SCIENCE AIN SHMS UNIVERSITY

PROF. DR. MOHAMED SALAH FODA

PROF. OF MICROBIAL CHEMISTRY AND VICE DEAN OF BASIC SCIENCE DIVISION NATIONAL RESEARCH CENTRE

DEPARTMENT OF MICROBIOLOGY FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

و ما دو می در این از از این این از این از این از این از این این از این از این این از ا

ACKNOWLEDGEMENT

The author would like to express her thanks and gratitude to **Dr. Mohamed Abu-Shady**, Professor of Microbiology, Department of Microbiology and Vice Dean of the Faculty of Science, Ain-Shams University for his kindly supervision, encouragement and support and continuous advice.

The author sincerely presents her gratefulness and deepest feelings to **Dr. Mohamed Salah Foda**, Professor of Microbiology, Department of Microbial Chemistry, National Research Centre, Cairo, Egypt, for suggesting the point and for his instructive discussions, supervision, continuous encouragement, valuable advice and sincere guidance throughout this work.

The author is also grateful to **Dr. H.S. Salama**, and **Dr. Aziza El-Sharaby**, Professors of Entomology Plant Protection Department, National Research Centre for their kindly supervision, encouragement and continuous advice.

The Co-operation and help of my colleagues and all members of Microbial Chemistry Department are gratefully acknowledged.

The thanks are also due to the National Research Centre for the facilities that enabled me to accomplish this work.

APPROVAL SHEET

NAME: MAGDA ABD EL-GHAFFAR EL-BENDARY

TITLE: STUDIES ON THE PRODUCTION AND STABILITY OF

BACILLUS THRINGIENSIS ENDOTOXIN.

SCIENTIFIC DEGREE: M.SC.

This thesis has been approved by supervisors:

Prof. Dr.Mohamed Abu shady
prof of microbiology and vice
dean of the faculty of science,
Ain -Shams University

Date of Research: 9/4/1991

Prof. Dr.Mohamed Salah Fouda
prof of microbiology and vice dean
of the basic science division,
National Researsh Centre.

M. S. 7021

CONTENTS

	rage
PREFACE	I
1. REVIEW OF LITERATURE	3
1.1. Discovery and History of Entomo-Pathogenecity of	
Bacillus thuringiensis (B.t.)	3
1.2. Cell Morphology and Classification of $\underline{\mathtt{B}}.\underline{\mathtt{t}}.\dots$	4
1.3. Toxins Produced by $\underline{\mathtt{B}}.\underline{\mathtt{t}}$	5
1.4. Nature of the Parasporal Crystalline-& - Endotoxin	7
1.5. Role of Spores in Pathogenicity of $\underline{B}.\underline{t}$. Against	
Insects	1 0
1.6. The Combined Action of Spores and Crystals in $\underline{B}.\underline{t}$.	
Pathogenicity	14
1.7. Mode of Action of- \mathcal{S} -Endotoxin of $\underline{B}.\underline{t}.$ in Susceptible	
Insects	15
1.8. Physiology of $\underline{B.t}$. Growth and- δ -Endotoxin Production	26
1.8.1. Metabolic Activities and Growth Kinetics	26
1.8.2. Conditions for Growth, Sporulation and Crystal	
Formation	27
1.8.2.1. Effect of pH, Carbon and Nitrogen	
Sources	27
1.8.2.2. Utilization of Complex Media and	
Agro-Industrial Byproducts for $\underline{\mathtt{B}}.\underline{\mathtt{t}}.$	
Production	34
1.8.2.3. Effect of Aeration	40

	Page
1.9. Factors Affecting Stability and Potency of $\underline{\mathtt{B}}.\underline{\mathtt{t}}.$	
δ - Endotoxin	42
1.9.1. Effect of Temperature	43
1.9.2. Effect of Radiations	47
1.9.3. Enhancement of \underline{B} . \underline{t} . Potency by Chemical Addi-	
tives	50
2. MATERIALS AND METHODS	54
2.1. Materials	5 4
2.1.1. Organisms Used and Sources of Cultures	54
2.1.2. Media	5 5
2.1.3. Chemicals and Reagents	61
2.2. Methods	64
2.2.1. Growth Conditions and Physiology of B.t	64
2.2.2. Staining Procedure of Crystalline-♂-Endotoxin	
of <u>B</u> . <u>t</u>	69
2.2.3. Light Microscopy, Electron Microscopy and His-	
tological Procedures	70
2.2.4. Isolation of Mutants of $B.t$. Resistant to	
— — Physical Factors	74
2.2.5. Recovery of the Spore-& -Endotoxin Complex of	
B.t. var. <u>aizawai</u> HD-282 for Bioassay Purposes	78
2.2.6. Insect Culture Breeding	7 9
2.2.7. Bioassay of Spore-∱-Endotoxin Complex of <u>B.t</u> .	
var. <u>aizawai</u> HD-282	80
2.2.8. Studies on Increasing Potency of Spore-&-Endo-	
tovin Compley by Chemical Additives	Ω1

			Page
3. R	ESULTS /	AND DISCUSSION	84
3.1.	Physio	ogy of <u>B</u> . <u>t</u>	84
	3.1.1.	Establishment of Growth Curves of $\underline{B}.\underline{t}.$ Cul-	
		tures Understudy	86
	3.1.2.	Effect of Initial pH and Medium Buffering on	
		Growth pattern and Sporulation Yield	89
	3.1.3.	Effect of Medium Supplementation with Diffe-	
		rent Carbon Sources on Growth, CFU, and Sporu-	
		lation Yields of <u>B.t.</u> var. <u>aizawai</u> HD-282	102
	3.1.4.	Effect of Medium Supplementation with Amino	
		Acids on Growth, Viable Counts and Sporulation	
		Titers of <u>B.t.</u> var. <u>aizawai</u> HD-282	107
	3.1.5.	Effect of L-aspartic Acid and L-cysteine con-	
		centration on Growth, CFU and Sporulation	
		Yields of B.t. var. <u>aizawai</u> HD-282	111
	3.1.6.	Effect of Supplementation of NBM with Yiest	
		Extract on Growth and Sporulation Yields of	
		<u>B.t.</u> var. <u>aizawai</u> HD-282	112
	3.1.7.	Effect of Extent of Aeration on Growth, CFU,	
		and Sporulation Titer of <u>B.t.</u> var. <u>aizawai</u>	
		HD-282	117
	3.1.8.	Effect of Inoculum Size on Growth, Viable and	
		Spore Counts of <u>B.t.</u> var. <u>aizawai</u> HD-282	125
3.2.	Potent-	als of Local Agroindustrial Byproducts and	
	Plant F	Proteins as Media for Production of $\underline{\mathtt{B.t.}}$. Spore- $_{c}$	5
	- Endo	otoxin Complex	128

			Page
	3.2.1.	Evaluation of Agroindustrial Byproduct for	
		$\underline{\mathtt{B}}.\underline{\mathtt{t}}.$ Production	128
	3.2.2.	Utilization of Legumes as Major Medium Compo-	
		nents for $\underline{\mathtt{B}}.\underline{\mathtt{t}}.$ Production	129
	3.2.3.	Development of Mono Component Media Based on	
		Local Byproducts	132
3.3.	Micros	copic Studies on Growth, Sporulation and Endo-	
	toxin 1	Formation	145
	3.3.1.	Morphological Changes During Growth, Sporoge-	
		nesis and Crystalline- &-Endotoxin Formation	
		in <u>B.t.</u> var. <u>aizawai</u> HD-282	145
	3.3.2.	Observation of Sporogenesis and Crystalline-	
		$oldsymbol{\mathcal{S}}$ -Endotoxin Formation by Transmission Elec-	
		tron Microscopy	153
3.4.	Assessi	ment of Mode of Action of Crystalline- δ -Endo-	
	toxin	and Histological Changes Induced by $\underline{B}.\underline{t}.$ var.	
	a i z a w a	i HD-282 in larvae of <u>Spodoptera</u> <u>littoralis</u>	16 5
	3.4.1.	Symptoms of Infection	165
	3.4.2.	Histopathological Effects of <u>B.t.</u> var. <u>sigavai</u>	
		HD-282 in Spodoptera littoralis	168
3.5.	Isolat	ion of Mutants Resistant to Physical Factors	18 8
	3.5.1.	Isolation and Characterization of Ultraviolet	
		Resistant Mutants	189
	3.5.2.	Isolation and Characterization of Heat-Resis-	
		tant Mutants	208
3 6	Potence	v Increase of C-Endotovin by chemical Additives	222

		Page
4.	GENERAL DISCUSSION	233
5.	SUMMARY	267
6.	REFERENCES	287
7.	ARABIC SUMMARY	316

List of Tables

Table	(1)	Screening of some strains of B.t. against Sp. littora-	Page
		lis larvae.	88
Table	(2)	Establishment of growth parameters of the three selected $\underline{B.t.}$ strains.	90
Table	(3)	Effect of initial pH of phosphate buffered NBM on	
·		growth, CFU and sporulation yields of <u>B.t.</u> var. entomocidus HD-635 grown in shake culture.	96
Table	(4)	Effect of initial pH of phosphate buffered NBM on	
		growth, CFU and sporulation yields of <u>B.t.</u> var. aizawai HD-134 grown in shake culture.	98
Table	(5)	Effect of initial pH of phosphate buffered NBM on growth, CFU and sporulation yields of $\underline{B} \cdot \underline{t}$. var.	
		aizawai HD-282 grown in shake culture.	100
Table	(6)	Effect of supplementation of NBM with different carbon sources on growth, viable count and sporulation yield	
		of <u>B.t.</u> var. <u>aizawai</u> HD-282.	103
Table	(7)	Effect of concentration of glucose and wheat flour in NBM on growth, viable count and sporulation yield of .	
		B.t. var. <u>aizawai</u> HD-282.	105
Table	(8)	Effect of supplementation of NBM with amino acids on	
		growth, CFU and sporulation titer of $\underline{B.t.}$ var. $\underline{aizawai}$ HD-282.	108

	Page
Table (9) Effect of L-aspartic acid concentration on growth	
parameters of <u>B.t.</u> var. <u>aizawai</u> HD-282.	113
Table (10) Effect of cysteine-Hcl concentration on growth para-	
meters of B.t. var. alzawal HD-282.	115
Table (11) Effect of supplementation of NBM with yeast extract on	
growth, viable count and sporulation yield of $\underline{B} \cdot \underline{t}$.	
var. <u>aizawai</u> HD-282.	118
Table (12) Effect of aeration level on growth parameters and	
crystalline	
HD-282 under shake incubation conditions.	121
Table (13) Effect of aeration level on growth parameters and	
crystalline- \int -endotoxin formation under static condi-	
tions.	123
Table (14) Effect of inoculum size on growth, viable count and	
sporulation titer of \underline{B} . var. $\underline{aizawai}$ HD-282 in NBM.	126
Table (15) Growth, sporulation and crystalline-&-endotoxin	
formation of <u>B.t.</u> var. <u>aizawai</u> HD-282 grown in BM	
supplemented with some Major byproducts of agricul-	
tural industries in Egypt.	130
Table (16) Growth, sporulation and crystalline- √-endotoxin	*
formation of <u>B.t.</u> var. <u>alzawai</u> HD-282 grown in BM	
supplemented with various leguminous seeds as the	
major nitrogen source in the growth medium.	131

		Page
Table (17)	Effect of fodder yeast concentration on growth param-	
	eters of B.t. var. <u>aizawai</u> HD-282.	135
Table (18)	Effect of offals meal concentration on growth para-	
	meters of <u>B.t.</u> var. <u>aizawai</u> HD-282.	137
Table (19)	Effect of feather meal concentration on growth para-	
	meters of B.t. var. aizawai HD-282.	140
Table (20)	Effect of soybean concentration on growth parameters	
	of B.t. var. alzawai HD-282.	143
Table (21)	UV-inactivation of vegetative cells (five hours grown	
	culture) of <u>B.t.</u> var. <u>aizawai</u> HD-282.	191
Table (22)	UV-inactivation of spores of <u>B.t.</u> var. <u>aizawai</u> HD-282.	194
Table (23)	Comparative survivors of UV-resistant mutants derived	
	from <u>B.t.</u> var. <u>aizawai</u> HD-282.	198
	Growth patterns, viable count, sporulation titer and	
	ability of crystalline- \(\int \)-endotoxin formation of some	
	selected UV-resistant mutants derived from B.t. var.	
	aizawai HD-282.	200
Table (25)	Comparison between the wild type strain $(\underline{B} \cdot \underline{t})$. var.	
	aizawai HD-282) and six selected UV-resistant mutants,	
	(with different abilities to synthesize crystals) with	
	respect to UV-radiation tolerance.	204

			Page
Table	(26)	Comparative evaluation of the potencies of UV-resis-	
		tant mutants against the target insect species \underline{S} .	
		littoralis.	209
Table	(27)	Survivors after heating treatments of a full grown	
_			211
		culture of B.t. var. aizawai HD-282.	211
Table	(28)	Comparative survivors counts of heat-resistant mutants	
		derived from B.t. var. aizawai HD-282.	213
Table	(29)	Growth patterns, viable counts, sporulation titers and	
		crystalline-6-endotoxin formation of some selected	
		heat-resistant mutants derived from B.t. var. aizawai	
		HD-282.	216
Table	(30)	Comparative UV-resistance patterns of some selected	
		heat resistant mutants of $\underline{B.t.}$ var. $\underline{\text{aizawai}}$ HD-282 as	*
		compared to their wild type strain.	220
Table	(21)		
Table	(31)	Comparitive evaluation of the potencies of	000
		heat-resistant mutants against larva of \underline{S} . <u>littorals</u> .	223
Table	(32)	Effect of lipid emulsifying agents on the potency of	
		B.t. var. aizawai HD-282 VS. S . littoralis larvae.	226
Table	(33)	Effect of protein solubilizing agents on the potency	
		of <u>B.t.</u> var. <u>aizawai</u> HD-282 VS. <u>S</u> <u>littralis</u> larvae.	228
Table	(34)	Effect of amino acids on the activity and potency of	
		B.t. var. aizawai HD-282 VS. S . littoralis larvae.	230

LIST OF FIGURES

		F	Page
Fig.	(1)	Changes in optical density (OD 600 nm) and pH of the	
		three selected $\underline{B}.\underline{t}.$ strains during 4 days incubation	
		period in NBM.	92
Fia.	(2)	Viable counts (CFU) of the three selected B.t. strains	
	(-)	during 4 days incubation period in NBM.	93
Fig.	(3)	Sporulation titers of the three selected $\underline{B}.\underline{t}.$ strains	
		during 4 days incubation period in NBM.	94
Fig.	(4)	Effect of initial pH of phosphate buffered NBM on	
		growth pattern and sporulation yield of $\underline{B}.\underline{t}.$ var. \underline{ento}	
		mocidus HD-635 grown in shake cultures.	97
Fig.	(5)	Effect of initial pH of phosphate buffered NBM on	
_	•	growth and sporulation yield of B.t.var. aizawai HD-134	
		grown in shake cultures.	99
		g. o.m. The online carrow es.	,,
Fig.	(6)	Effect of initial pH of phosphate buffered NBM on-	
		growth and sporulation yield of $\underline{B}.\underline{t}.var.$ $\underline{aizawai}$ HD-282	
		grown in shake cultures.	101
Fig.	(7)	Effect of concentration of glucose and wheat flour on	
		viable count and sporulation yield of B.t. var. aizawai	
		HD-282.	106
F# -	/e\	Effect of NOM complements the control of the	
rig.	(8)	Effect of NBM supplementation with amino acids on	
		viable count and sporulation titer of $\underline{B.t.}$ var. $\underline{aizawai}$	
		HD-282.	110