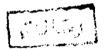
SOME REPRODUCTIVE ASPECTS OF EGYPTIAN BUFFALO BULLS

BY


KHALED TAWFIK MOHAMED OSMAN

B.Sc. Agriculture (Animal Production)Ain Shams University, 1979M.Sc. Agriculture (Animal Physiology)Ain Shams University, 1988

5,537

636-293 Kh 7

A thesis submitted in partial fulfilment of the requirements for the degree of

DOCTOR OF PHYLOSOPHY

in

Agricultural Science "Animal Physiology"

Department of Animal Production Faculty of Agriculture Ain Shams University

1996

Approval Sheet

SOME REPRODUCTIVE ASPECTS OF EGYPTIAN BUFFALO BULLS

 $\mathbf{B}\mathbf{y}$

Khaled Tawfik Mohamed Osman

B.Sc. Agric. (Animal Production) Ain-Shams University, 1979

M.Sc. Agric. (Animal Physiology) Ain-Shams University, 1988

This thesis for Ph.D. degree has been approved by:

Prof. Dr. A. A. Mohamed Ale a Mohame of Professor of Animal Physiology
Al-Azhar University

Prof. Dr. E. A. Kotby
Professor of Animal Physiology
Ain-Shams University

Prof. Dr. M. A. El-Fouly
Professor of Animal Physiology
Ain-Shams University (Supervisor)

Date of examination: 15/1/1996

ACKNOWLEDGEMENT

Endless praiseful thanks are due to ALLAH, the most gracious, the most merciful, for giving me the ability and patience to finish this work.

I am deeply appreciated to my *Prof. Dr. Mohamed Ahmed El-Fouly*, Professor of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Ain-Shams University, for his valuable supervision, professional guidance and continual support throughout the entire journey of my graduation. It is hard to communicate in words just how much this experience has meant to me. You always had words of inspiration to light my way with hopes. I have learned more from you than you will ever expect. It has been just a great honour being one of your students.

I would also like to express my thanks and gratitude to *Prof. Dr. Safaa Olfat Amin*, Professor of Animal Physiology at the same departmen, for her valuable advice and motherly care throughout the course of my endeavours. Your constructive criticism was well taken and appreciated.

Sincere acknowledgement is due to *Prof. Dr. Laila Hassan Bedeir*, Professor Emeritus of Animal Breeding, Animal Production Research Institute, Ministry of Agriculture, for her moral support and keen advice. You always believed in me and let me the captain of my own ship, no matter what rout I chose to take. Thank you for all you have done to me.

I am greatly indebted to *Dr. Reda M. Khattab*, Manager of Animal Production Research Station, Mehallet-Moussa, Kafr El-Sheikh, Animal Production Research Institute, for his brotherly cooperation during the experimental part of this work. He provided all facilities which made the completion of this part possible. Thank you for your help.

The author is also grateful to *Dr. Mohamed A. Salama*, Buffalo Breeding Research Department, for his unforgotten help in statistical analysis.

Hearty thanks are going to all my colleagues at Buffalo Breeding Research Department, but to someone special, *Dr. Enaam M. Moukless*, Head of the Department, the author does thank you most sincerely for your unfailing encouragement during the course of my study.

My gratitudes are also due to all staff members at Mehallet Moussa experimental station for their sincere cooperation and help during the experimental part of this work.

Inspiration comes in many forms. The author's inspiration is a product of love and encouragement he received from his entire family. Special thanks to you all.

Finally, I am deeply appreciated to *Mr. Salah Ismail* for enduring the laborious task of typing this thesis.

SOME REPRODUCTIVE ASPECTS OF EGYPTIAN BUFFALO BULLS

By

KHALED TAWFIK MOHAMED OSMAN

B.Sc. Agric. Sci. (Animal Production)

Ain-Shams University, 1979

M.Sc. Agric. Sci. (Animal Physiology)

Ain-Shams University, 1988

Under the Supervision of:

Prof. Dr. M.A. El-Fouly,

Prof. of Animal Physiology

Prof. Dr. S.O. Amin,

Prof. of Animal Physiology

Prof. Dr. L.H. Bedeir,

Prof. of Animal Breeding

ABSTRACT

Khaled Tawlik Mohamed Osman. Some Reproductive Aspects of Egyptian Buffalo Bulls. Unpublished Doctor of Science, University of Ain-Shams, Faculty of Agriculture, Department of Animal Production, 1996.

The thesis comprised three separate studies:

Study I: This study aimed at the evaluation of the anatomical and histological development of genital organs in 27 young and pubertal buffalo bulls of ages ranging between 1-24 mo. Blood testosterone levels, development of mating behavior, age at penile separation and at first donation of semen were also investigated.

The results of this study have shown that appropriate feeding and professional management are the two basic requirements for the achievement of early puberty and maturity in buffalo calf bulls.

Study II: This study aimed at the evaluation of group-mating as a system of breeding frequently used for breeding buffalo cows in many governmental and private farms. The results of 10 fertility trials (mating groups) utilizing 3 tested buffalo bulls and 188 mature females, were analyzed. The impact of this system of breeding on the reproductive performance of buffalo bulls was scrutinized throughout a one year round.

It has been concluded that the current system of breeding does not suit the existing situation of the shortage of genetically tested buffalo bulls in Egypt.

Study III: A new untraditional method for freezing buffalo semen was evaluated. The semen was collected from 3 tested buffalo bulls over a period of 14 weeks at the rate of 2-3 successive ejaculates/bull/week. During this period, the semen was evaluated, sorted, initially treated with the broad spectrum antibiotic "Cephapirin", extended in a pre-frozen tris based

extender, processed and finally stored in LN for periods of 1 day, 1 month, and 2 months. Sperm motility was assessed at each stage of semen processing and storage. The impact of thawing regime on sperm motility, viability and morphology was also studied. In addition, a pilot AI trial comprising 48 buffalo cows was conducted to check the fertility of frozen semen.

The results have shown that the current methodological procedures are suitable for successful freezing of buffalo semen.

Key words: Puberty - Male buffalo - Testosterone - Single sire herd breeding - Libido - Pre-frozen extenders - Frozen buffalo semen - Thawing temperature - Cephapirin.

TABLE OF CONTENTS

	Page
Study I:	
Introduction	1
Review of Literature	ڗ
Gonads and excurrent ducts	
The testicles	
Epididymis	
Ductus (vas) deferens	
Pelvic urethra	
The penis	
Accessory sex glands	
Ampulla	
Seminal vesicles	
Prostate gland	
Copwer's gland	
Scrotum	
Testosterone level	
Separation of the penile sheath	
Material and Methods	
Results and Discussion	.35
1. Body weight of the experimental animals	.35
2. The gonads (Testicles)	
3. The excurrent ducts.	
3.1. Epididymis	.44
3.2. Ductus (vas) deferens	.53
3.3. Pelvic urethra and penis	.64
4. Accessory sex glands	.70
4.1. The ampulla	
4.2. Seminal vesicles	.78
4.3. Prostate gland	. 85
4.4. Bulbo-urethral glands	. 88
5. Scrotum	.99
6. Plasma testosterone levels	. 105
7. Separation of the penile sheath, sexual behavior and semen	
ejaculation.	
8. Correlation coefficients	
Concluding Remarks	.113
Recommendations	115

References	.116
Study II:	
Introduction	.122
Review of Literature	
1. Single-sire herd breeding	
2. Breeding soundness examination (BSE) of bulls	
3. Libido, mating ability and serving capacity	125
4. Scrotal circumference (SC)	
5. Reaction time	
6. Semen characteristics	
6.1. Ejaculate volume	
6.2. Semen density	129
6.3. Sperm motility	130
6.4. Initial pH of semen	130
6.5. Percent live sperm	131
6.6. Sperm concentration/ml	
6.7. Sperm concentration/ejaculate	
6.8. Sperm abnormalities	
6.8.1. Sperm head abnormalities	134
6.8.2. Acrosomal defects	
6.8.3. Protoplasmic droplets	.135
6.8.4. Sperm tail abnormalities	136
6.8.5. Sperm detached heads	
6.8.6. Middle piece abnormalities	138
6.8.7. Diadem/crater defect	139
6.8.8. Total sperm abnormalities	.141
7. Seasonal variations in semen quality and fertility	
Material and Methods	
Results and Discussion	156
1. Body weight of buffalo bulls	. [56
2. Clinical measurement of genital organs	.156
2.1. Scrotal circumference (SC)	. 156
2.2. Seminal vesicles	.159
2.3. Prostate corpus	.161
3. Seasonal variations in sex drive, mating ability and serving	
capacity of group mating buffalo bulls	
3.1. Total mounting attempts	
3.2. Serving capacity score	
3.3. Service/mounts ratio	
3.4. Number of incomplete mounts	. 172
3.5. Incomplete mounts/total mounts ratio	172

3.6. Number of Flehmen exerressions	172
3.7. Time -to first service	175
3.8. Libido score	175
4. Impact of group-mating and season of the year on the RT and	
semen characteristics	178
4.1. Reaction time	180
4.2. Ejaculate volume	184
4.3. Semen density	
4.4. Sperm mass activity	189
4.5. Individual sperm motility	192
4.6. Initial pH	194
4.7. Percent unstained sperm	197
4.8. Sperm concentration/ml	199
4.9. Sperm concentration/ejaculate	204
4.10. Percent normal sperm	208
5. Differential counts of sperm abnormalities	213
5.1. Percent protoplasmic droplets	
5.2. Percent abnormal acrosomes	214
5.3, Percent head abnormalities	217
5.4. Percent detached heads	219
5.6. Percent middle piece abnormalities	221
5.7. Percent diadem/crater defects	223
6. Fertility of group-mating buffalo bulls	225
Concluding Remarks	231
Recommendations	232
References	233
Study III:	
Introduction	242
Review of Literature	244
1. Semen characteristics in relation to sperm freezability	245
2. Bull variance in relation to sperm freezability	248
3. Freezing point depression (FDP) of cattle and buffalo bull	
semen	250
4. Diluent composition	253
4.1. Diluent cryoprotectants	254
4.1.1. Egg yolk	
4.1.2. Glycerol	257
4.2. Buffers and extender midia	261
4.2.1. Citrate-based extenders	261
4.2.2. Milk-based extenders	262
4.2.3. Tris-based extenders	263

4.2.4. Miscellaneous extenders	, 267
4.2.5. Diluent additives	
4.2.6. Antibiotics	. 269
5. Pre-frozen extenders	. 272
6. Dilution rate and spermatozoal numbers/inseminate	.273
7. Cooling of extended semen	
8. Equilibration period	.276
9. Freezing rate and packaging system	. 278
10. Thawing regime	
11. Fertility of frozen semen	.284
Material and Methods	. 287
Results and Discussion	.294
1. Initial semen quality	. 294
2. Effect of processing, freezing and storage of semen on sperm	
motility	.294
2.1. Effect of dilution on sperm motility	, 294
2.2. Effect of equilibration on sperm motility	.298
2.3. Effect of freezing on sperm PTM	. 299
2.4. Effect of storage of semen on PTM	.300
3. Effect of thawing temperature on semen quality	
3.1. Effect of thawing regime on PTM	.302
3.2. Effect of thawing regime on the percentage of live sperm	.307
3.3. Effect of thawing temperature on the percent abnormal	
acrosomes.	. 309
3.4. Effect of thawing regime on the percent morphologically	
normal sperm.	.312
3.5. Effect of thawing regime on the viability time of spermatozoa.	.314
4. Fertility of frozen semen	
Concluding remarks	.322
Recommendations	. 324
References	
General Summary	
Ambia Summary	