Assessment of Some Air pollutants in Cairo and their Role in Atmospheric photochemistry

Thesis Submitted

By Mamdouh Ibraheim Meleigy Khoder

(B.Sc. 1986 & M.Sc. 1994 Chemistry)

For the Degree of

Doctor of Philosophy (Ph.D)

(Chemistry)

In

Ain Shams University
Faculty of Science
Chemistry Department

1997

Assessment of Some Air pollutants in Cairo and their Role in Atmospheric photochemistry

Thesis Submitted

by

Mamdouh Ibraheim Meleigy Khoder

(B.Sc. 1986 & M.Sc. 1994 Chemistry)

For the Degree of

Doctor of Philosophy (Ph.D)

in Chemistry

Faculty of Science

Ain Shams University

Chemistry Department

Supervisors

Prof. Dr. Abd El Rhman M. Mousa

Dept. of chemistry

Faculty of Science

Ain Shams University

Prof.Dr.Saad A.Farag

Air Pollution Dept.

Environmental Division

NRC, Dokki

Prof. Dr. Hoda F.S. Rizk

Air Pollution Dept.

Environmental Division

NRC, Dokki

Prof.Dr. Alia A. Ali

Air Pollution Dept.

Environmental Division

NRC, Dokki

1997

Ain Shams University Faculty of Science Chemistry Department

Assessment of Some Air Pollutants in Cairo and their Role in Atmospheric Photochemistry

Supervised by:

Prof. Dr. Abd El Rhman M. Mousa

Dept. of chemistry
Faculty of Science

Ain Shams University

Prof.Dr.Saad A.Farag

Air Pollution Dept.
Environmental
Division NRC, Dokki

Prof. Dr. Hoda F.S. Rizk

Air Pollution Dept. Environmental Division NRC, Dokki

Prof.Dr. Alia A. Ali

Air Pollution Dept. Environmental Division NRC, Dokki Approved

M. Meus.

s. A. Farag

H-SKizK


Alsa A. Shakour

Head of Chemistry

Department

A.F.M. Fahmy

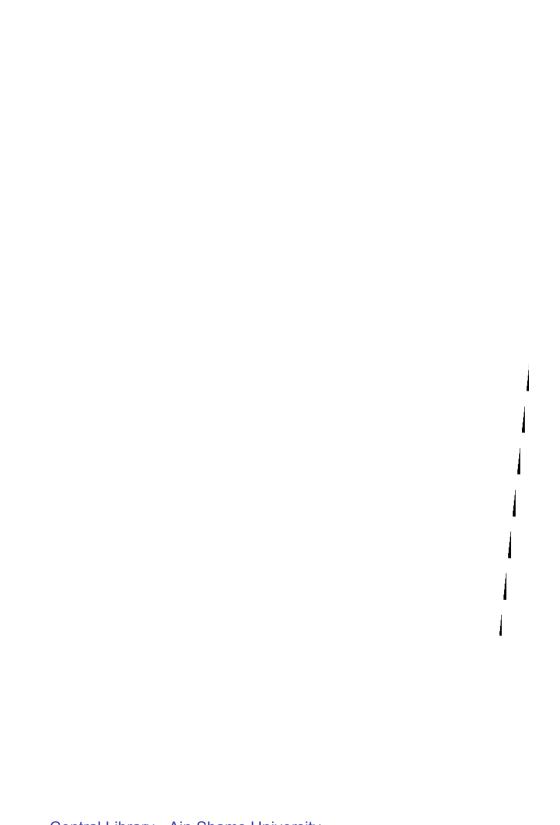
Prof. Dr. A .F.Fahmy

This Thesis Has Not Been Submitted for A Degree At This Or Any Other University.

Mamdouh Ibraheim Meleigy Khoder

"ACKNOWLEDGEMENT"

I am deeply thankful to God by the grace of whom progress of this work was possible.


I wish to express my deep thanks to Prof. Dr. Abd El Rahman M. Mousa, Professor of Chemistry, Faculty of Science, Ain Shams University for sound supervision, kind help, valuable advice, constructive criticism and encouragement, and also for suggesting, explanation and interest in pollution impact assessment studies of this work.

I would like to express my deep thanks, sincere appreciation and gratitude to **Prof. Dr. Saad A. Farag**, Professor of Air Pollution, Air Pollution Department, National Research Centre, for suggesting and planning the programme of the work, sound supervision, valuable advice, guidance and contineous help.

I would like to express my deep thanks and sincere gratitude to Prof. Dr. Hoda F.S. Rizk, Professor of Air Pollution, Air Pollution Department, National Research Centre, for sound supervision, valuable advice, constructive criticism, her kind help, continuous support, and encouragement.

I would like to express my deep thanks and sincere gratitude to Prof. Dr. Alia A. Ali, Professor of Air Pollution, Air Pollution Department, National Research Centre, for sound supervision, valuable advice, constructive criticism, her kind help, continuous support, and encouragement I would like to express my deep thanks to Dr. Said El-Mosallamy, Faculty of Science, Ain Shams University for help in microscopic examination.

Thanks are also, due to the staff members of Air Pollution Laboratory, National Research Centre, for their help and cooperation. Finally, I cannot adequately express my feelings and overlasting gratitude to all my family and my sincere friends for their support and encouragement.

Abstract

The object of this investigation is to assess primary pollutants, their concentration and to study the role of meteorological factors on the formation of photochemical reactions in urban atmosphere and the determination of the levels of secondary pollutants such as ozone, oxidants, smog, sulphates, nitrates and nitrites in Cairo City, in addition to the impact assessment of the accumulation of these pollutants on materials as a reference for comparison-

This takes place through the following:

- 1- Determination of surface ozone and total oxidant levels, their seasonal and diurnal variations.
- 2- Estimating the relation between surface ozone concentrations and the concentration of some gaseous pollutants such as NO₂, NO.
- 3- Investigating the photochemical reactions which may take place in this atmosphere.
- 4- Studying the particulate matter concentrations in both forms, dustfall and total suspended dust and their chemical composition.
- 5- Evaluating of heavy metals levels.
- 6- Studying the effects of meteorological factors on the concentrations of particulate matter and gaseous pollutants.
- 7- Studying the impact of these pollutants and their accumulation on materials exposed in different areas.
- 8- Suggesting possible ways or means to abate or minimize air pollution in Cairo.

CONTENTS

<u> </u>	Page
LIST OF FIGURES	í
LIST OF TABLES.	
LIST OF PLATES	
I. INTRODUCTION	v
	,
I. 1. The Greater Cairo Area	
I . 2 . Air pollution problem	
I . 3 . Object of investigation	/
II. LITERATURE REVIEW	
II . 1 . Primary pollutants	
II.1.1. Nitrogen oxides (NO _x) (NO+NO ₂)	
II.1.2. Sulphur dioxide (SO ₂)	
II . 2 . Secondary pollutants (ozone and oxidants)	
II.2.1. Natural ozone (upper atmosphere)	18
II.2.2. Man-made ozone (lower atmosphere)	22
11.2.3. Correlation between NO _x and ozone	
concentrations	
II . 3 . Suspended particulate matters	38
II . 4 . Dust-faIl	43
II . 5 . Impact assessment of pollutants	46
II.5.1. Harmfull effect of primary pollutants	46
II.5.2. Harmfull effect of secondary pollutants	48
III.MATERIAL AND METHODS.	
III.1. Measurement of Gaseous pollutants	52
III.1.1. Measurement of nitrogen oxides	
(NO+NO ₂)	52
III.1.1.1 Nitrogen dioxide	
III.1.1.2. Nitric oxide	
III.1.2.Measurement of SO ₂	
III.1.3.Measurement of photochemical oxidants	
III. I.4. Monitoring of ozone	
III.2. Analysis of Dust-fall matters	
III.2.1.Sampling	
III.2.2.Analysis of deposited Matters	

III.2.2.1.Total weight	62
III.2.2.2. Determination of water soluble	
matters	62
III.2.2.3. Determination of water	
insoluble matters	65
III.3.Suspended Particulate Matter	
III.3.1.Sampling	
III.3.2 Analysis of suspended particulate matter	
III.3.2.1. Weight of water soluble and	
insoluble matter	66
III.3.2.2. Chemical analysis of water	
soluble matter	66
III.3.2.3. Determination of heavy metals	
III.4. Determination of Physical and Chemical	
Proparties of Exposed Cotton Fabrics	67
III.4.1. Increase in weight	
III.4.2. Determination of sulphates and nitrates	
on the exposed cotton fabrics	67
III.4.3. PH values of exposed cotton fabrics	
III.4.4. Determination of lead concentration	
on the exposed cotton fabrics	68
III.4.5. Tensile strength	
III.4.6. Color measurments	
III.4.7. Infrared spectrum of exposed cotton	
fabrics(FTIR)	68
III.4.8. Microscopic examination	
III.5. Description of Sampling Sites	69
III.6. Meteorological Measurement and Data	
III.7. Statistical Calculation	71
IV. RESULTS AND DISCUSSION.	
IV.1. Primary Pollutants	72
IV.1.1. Diurnal variations of NO, NO ₂ and	
NO _x concentrations	72
IV.1.2. Seasonal and annual variations of	
NO. NO ₂ and NO _x concentrations	86
IV.1.3. Seasonal and annual variations of	
NO ₂ /NO ratio	. 106