AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

RESPONSE OF OFFSHORE STRUCTURES TO ENVIRONMENTAL FORCES

A THESIS

SUBMITTED IN FULFILLMENT

FOR THE REQUIREMENT OF THE DEGREE OF

DOCTOR OF PHILOSOPHY IN

CIVIL ENGINEERING (STRUCTURAL)

627.58 5 Y

SUPERVISED BY

3571

Prof. Dr. KAMAL HASSAN

Prof. Of Steel Structures Ain Shams University Prof. Dr. ABD EL MOHSEN ELMONGY

Prof. Of Harbour Eng. Ain Shams University

Dr. MOHAMED N. FAYED Assoc. Prof. Of Structural Eng.

Ain Shams University

CAIRO - 1996

EXAMINERS COMMITTEE

Name, Title And Affiliation

Signature

1. Prof. Dr. MOSTAFA A. SWELEM

No.

Prof. Of Steel Structures

Alexandria University

2. Prof. Dr. ADEL H, SALEM

Prof. Of Steel Structures

Ain Shams University

Roberte

On The Behalf Of Supervisors Committee

Prof. Dr. KAMAL HASSAN

Ain Shams University

Prof. Of Steel Structures

3.

4. Prof. Dr. ABD EL MOHSEN EL MONGY

Prof. Of Harbour Eng.

Ain Shams University

Date $\frac{29}{6}$ / 1996

Information about the researcher.

Name

Said Yousif Abo El-Haggag Abd El Aziz.

Date of Birth

August 3, 1954.

Place of Birth

El Harm Giza.

Qualifications

B.Sc. degree in Civil Engineering (Structural), M. Sc. (Structural) (1987) Faculty of Engineering Ain Shams

University.

Current Job

Assist. Lecturer in Civil Engineering Department

(Structural Section), Faculty of Engineering Ain Shams

University.

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of **Doctor of Philosophy** in Civil Engineering (Structural).

The work included in this thesis was carried out by the author in the department of Civil Engineering (Structural Division), Ain Shams University, from January 1990 to December 1995.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date: 29/6-/ 1996

Name: Said Yousif Abo El-Haggag

Signature : - SW

ACKNOWLEDGEMENT

I would like to express my deepest gratitude and most sincere appreciation to **Prof. Dr. Kamal Hassan**, Professor of Steel Structures, Structural Engineering Department, Ain Shams University for his constant guidance and valuable suggestions.

I would like also to express my deepest gratitude and most sincere appreciation to **Prof. Dr. Abd El Mohsen El Mongy**, Professor of the Harbour Engineering , Irrigation and Hydraulic Department, , Ain Shams University for his constant guidance and valuable suggestions.

I am extremely indebted to **Dr. Mohamed Noor Fayed**, Associate Professor of the Theory of Structures, Structural Engineering Department, Ain Shams University whose instructive supervision, continuous advice, permanent encouragement and experienced guidance made this work possible.

Name Said Yousif Abo El-Haggag

Title "Response of Offshore Structures to Environmental Forces"

Doctor Of Philosophy, Faculty Of Engineering, Ain Shams University.

ABSTRACT

This thesis deals with the static and dynamic analysis of offshore structures subjected to environmental forces. A study of the different methods for simulation of environmental forces especially, wave forces current forces and wind forces has been performed.

The mathematical equations for simulation by multiregressive method are derived taking into account the variation of frequency and height of waves. A method for predicting the static and dynamic response of linear and non - linear structures is developed. The proposed method of analysis is based upon step by step response calculation in the time domain in which equilibrium of the forces at the end of each time step is established by minimization of the total potential work using the method of conjugate gradient.

The environmental forces and the effect of support conditions have been introduced into the mathematical formulation. The complete theory has been developed in terms of the Newmark equations. Numerical studies of the behavior of different offshore structures are presented. The effects of many factors on their static and dynamic response are discussed. The results of this study are discussed and summarized.

CONTENTS

Acknowledgment	i
Abstract	ii
Table of contents	iii
List of Figures	xi
List of Tables	xxiii
CHAPTER (1) INTRODUCTION	
1.1 GENERAL	I
1.2 HISTORICAL BACKGROUND OF OFFSHORE STRUCTURES	2
1.3 TYPES OF OFFSHORE STRUCTURES	4
1.3.1 Fixed Platforms	5
1.3.2 Floating Platforms	12
1.3.3 Compliant Platforms	13
1.3.4 Subsea Structures	14
1.3.5 Special Structures.	15

1.3.6 Miscellaneous Structures.	16
1.4 ENVIRONMENTAL FORCES	17
1.4.1 General	17
1.4.2 Wind	17
1.4.3 Waves	19
1.4.4 Tides	21
1.4.5 Currents	22
1.4.6 Ice	23
1.4.7 Other Environmental Information.	23
1.5 ACTIVE GEOLOGIC PROCESSES	
1.5.1 General	25
1.5.2 Earthquakes	26
1.5.3 Faults	26
1.5.4 Seafloor Instability	27
1.6 OBJECT OF THE WORK	28
1.7 LAYOUT OF THE THESIS.	29

<u>CHAPTER (2)</u> STATISTICS, SPECTRA AND SIMULATION OF SEA WAVES

2.1 INTRODUCTION	54
2.2 SURFACE WAVES	55
2.2.1 Basic Concepts	55
2.2.2 The conditions on the free surface	58
2.3 WAVE STATISTICS	60
2.3.1 Wave Height Distributions	60
2.3.2 Concept Of The Significant Wave	63
2.4 WAVE SPECTRUM	64
2.4.1 Empirical Formula Of Spectrum	64
2.4.2 Directional Spectrum	68
2.4.3 Cross Correlation Function, Coherence Function And Cross Wave Spectrum	70
2.4.4 Selection Of Design Wave Spectra	75
2.5 SIMULATION OF SEA WAVE SURFACE ELEVATION BY FOURIER SUPERPOSITION MODEL	77

WAVE SURFACE ELEVATION BY AUTO-	
REGRESSIVE AND MULTI- REGRESSIVE MODELS.	
2.6.1 Choice Of The Model	81
2.6.2 Auto-Regressive Model	82
2.6.3 Multi-Regressive Model	88
2.7 APPLICATIONS USING THE PROPOSED MODELS	
FOR SURFACE SEA WAVE SIMULATION	93
2.7.1 Cases Of Study	94
2.7.2. Results And Discussion	95
CHAPTER (3) WAVE FORCES ON OFFSHORE STRUCT	URES
3.1. INTRODUCTION	120
3.2. GOVERNING EQUATIONS FOR WAVE MOTION	121
3.3. LINEAR WAVE THEORY "AIRY WAVE THEORY" 3.4. NON-LINEAR WAVE THEORIES	125
3.4. NON-LINEAR WAVE THEORIES	129
3.4.1 Stock's finite Amplitude Wave Theory	129
3.4.2. Solitary Wave Theory	137

3.4.3. Cnoidal Wave Theory	139
3.4.4. Hyperbolic Wave Theory	143
3.4.5. Trochoidal Wave Theory	146
3.4.6. Stream Function Theory	148
3.5. COMPARISON OF WAVE THEORIES	
3.6. TIDAL CURRENTS	157
3.7. WAVE FORCE FORMULATION	159
3.7.1 Drag and Inertia Coefficients	159
3.7.2. Morison Equation	163
CHAPTER (4) NONLINEAR STATIC AND DYNAMIC ANALYSIS BY MINIMIZATION OF THE	
TOTAL POTENTIAL WORK	
4.1 INTRODUCTION	193
	193 194
4.1 INTRODUCTION	
4.1 INTRODUCTION 4.2 DYNAMIC LOADINGS	194

4.3 THEORY

	4.3.1 Expression for the Total Potential Work	201
	4.3.2 Expression for The Gradient of The Total Potential Work	205
	4.3.3 The Linear Change of Acceleration Method	206
	4.3.4 The Wilson-θ Method	207
	4.3.5 The Newmark Method	208
	4.3.6 Minimization of the total potential work by the Method of Conjugate Gradients	209
4.4	CONVERGENCE AND SCALING TECHNIQUE	220
4.5	THE EQUIVALENT MODULUS OF ELASTICITY OF CABLES.	221
4.6	STEP BY STEP PROCEDURE FOR MINIMIZATION OF THE TOTAL POTENTIAL WORK	
	4.6.1 Static analysis	223
	4.6.2 Dynamic analysis	224
4. 7	SLACKENING CABLE ELEMENTS AND CABLE RUPTURES	227