

The Use of Food Industry Byproducts in Ruminant Nutrition

BY

Mohamed Fathy Mohamed Sadek

B.Sc., Agric. Sci., (Animal Production) Ain Shams University (1983) M.Sc., Agric., (Animal Nutrition) Ain Shams University (1989)

636 08

A thesis submitted in partial fulfillment

of

the requirement for the degree of

Doctor of Philosophy

in

Agricultural Science

(Animal Nutrition)

46829

Department of Animal Production
Faculty of Agriculture
Ain Shams University

(1999)

 \cdot \mathbf{f}_{i}^{\prime}

The Use of Food Industry Byproducts in Ruminant Nutrition

BY

Mohamed Fathy Mohamed Sadek

B.Sc., Agric. Sci., (Animal Production) Ain Shams University (1983)M.Sc., Agric., (Animal Nutrition) Ain Shams University (1989)

Under the supervision of:

Prof. Dr. M. A. El-Ashry.

Prof. of Animal Nutrition, Fac. Of Agric., Ain Shams University.

Ass. Prof. Dr. H. M. Metwally.

Asst. Prof. of Animal Nutrition, Fac. of Agric., Ain Shams University.

Ass. Prof. Dr. A. Abd El-Basit.

Senior Research of Animal Nutrition, Animal Production Institute.

APPROVAL SHEET

The Use of Food Industry Byproducts in Ruminant Nutrition

BY

Mohamed Fathy Mohamed Sadek

B.Sc., Agric. Sci., (Animal Production) Ain Shams University (1983)
M.Sc., Agric., (Animal Nutrition) Ain Shams University (1989)

Sa) Nel

This thesis for Ph. D. degree has been approved by:

Prof. Dr. S. A. Mahmoud

Prof. of Animal Nutrition Faculty of Agriculture,

Kafer El Sheikh.

Prof. Dr. H. M. Gado

Prof. of Animal Nutrition Faculty of Agriculture,

Ain Shams University.

Prof. Dr. M. A. A. El-Ashry

Prof. of Animal Nutrition Faculty of Agriculture,

Ain Shams University.

Date of examination: 15/9/1999

ACKNOWLEDGEMENTS

I wish to express my appreciation and gratitude to Dr. Mohamed A. El-Ashry Professor of Animal Nutrition, Animal Production Department, Faculty of Agriculture, Ain Shams University for his supervision and his kind interest in the subject.

I feel greatly appreciate to Dr. Hamdi Mousa Assistant Professor of Animal Nutrition, Animal production, Department, Faculty of Agricultural, Ain shams University for his close supervision of this work. I am grateful to his useful critics and careful guidance through the curse of the thesis.

Thanks is due to Dr Ahmed A. Al-Basset Professor of Animal Nutrition, Department of Waste Utilization researching, Animal Production Research Institute, Ministry of Agriculture for his kind supervision.

The author feels humbly indebted to his respectable parents and sister for their encouragement and sincere devotion all the time. Their provision of home calmness and sparing time were of great helping for the accomplishment of this work.

It is of great pleasure to express my deepest thanks for my wife for her kind support and encouragement during all that hard time. Her provision of home calmness and sparing time were of great helping for the accomplishment of this work.

Finally thanks due to the spirit of Dr. A. Al-Serafy Professor of Animal Nutrition, Animal Production Department, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Mohamed Fathy Mohamed Sadek, The Use of Food Industry Byproducts in Ruminant Nutrition, Unpublished Doctor of Philosophy, Ain Shams University, Faculty of Agricultural, Department of Animal Production, 1999.

Cannery byproducts were collected from 5 different plants. Fruits (11 kinds) and vegetable (10 kinds) processing byproduct samples were analyzed for total moisture, crude proteins, ether extract, crude fiber, nitrogen free extract, organic matter and total ash. In the second part Pea pods and Artichoke crown leaves silage were used as sole roughage for lactating buffaloes in two different seasons. The summer season trial compared fresh Darawa or Berseem silage cannery byproduct silage. The winter season trial compared fresh Berseem or silage of Darawa with the same byproducts silages. The result indicated that silage of cannery by products could replace fresh Darawa and silage of Berseem in the summer and replace fresh Berseem or com silage in winter without affecting animal performance. Economically, Artichoke residual could help in minimizing production cost. The third part compared nutrient Apparent digestibility coefficient by internal (ADL & AIA) and external (Co EDTA & Chromium Oxide) marker technique. The results indicated that no markers fulfill all good markers characteristics and the results of digestibilities not only affected by the marker and the type of ration but also affected by the nutrient under investigation.

Key Words: Waste, Byproducts, Cannery, Food industry, Ruminant,
Buffalo, Lactating, Nutrient, Internal Marker, External
Markers, Acid Insoluble Ash, Acid Detergent Lignin.
Cobalt, Chromic, EDTA.

LIST OF CONTENTS

	ī	Page				
INTRODUCTIO	NO	1				
REVIEW OF LITERATURE 3						
1.	Waste, Residual and Byproducts	3				
1.1.	Waste classification	4				
1.2.	Waste source & quantity	4				
1.3.	Factors Affect Waste Utilization and Recycling	11				
1.3.1.	Waste Variability	13				
1.3.2.	Economic factor	15				
1.4.	Waste and Byproducts in animal ration	16				
2.	Forage conservation	36				
2.1.	Conservation by drying	36				
2.1.1.	Losses in conservation by drying	37				
2.1.2.	Effect of dry preservation on feeding value	38				
2.2.	Conservation by ensiling	40				
2.2.1.	Basics of Ensiling	41				
2.2.2.	Crop composition	43				
2.2.3.	Losses during ensiling	46				
2.2.4.	Silage additives	50				
2.2.5.	Effect of ensiling on animal performances	5 9				
2.2.5.1.	Effect of ensiling on Feed Intake	59				
2.2.5.2.	Effect of Ensiling on Digestibility	63				
2.2.5.3.	Effect of Ensiling on Energy Utilization	64				
2.2.5.4.	Effect of Ensiling on Protein utilization	64				
2.3.	Effect of different conservation methods on over all feeding					
	value	66				
MATERIALS AND METHODS						
1.	Investigation Objective	90				
2	Food industry hyproduct collection	01				

		F	age?
	3.	Pea and Artichoke residual Silage	91
	, 5 .	Animals, Rations and experimental design	92
	5.2.	Summer Trial	92
	5.2.	Winter Trial	92
	6.	Feeding and Management	93
	7.	Milk Samples	94
	8.	Rumen Liquor Samples	94
	9.	Blood Samples	94
	10.	Analytical Methods	95
	10.1.	Feed stuffs and byproduct samples	95
	10.2.	Milk Constant Analytical Methods	95
	10.3.	Blood Parameter Analytical Methods	95
	10.4.	Rumen Parameter Analytical Methods	96
	11.	Nutrient Digestibility and Markers Application	96
	12.	Calculation of Feed Efficiency	97
	13.	Statistical Analysis	98
RESULTS AND DISCUSSIONS9			99
	PART ONE		99
	1.	Fruits and Vegetable Processing Byproducts	99
	1.1.	Production Season	99
	1.2.	Types of Byproducts	102
	1.3.	Canning Crop Residual Percentage	103
	1.4.	Canning Crops Residual Analysis	107
	1.4.1.	Moisture and Dry Matter contents	107
	1.4.2.	Crude Protein content	112
	1.4.3.	Crude Fiber content	117
	1.4.4.	Ether Extract Content	121
	1.4.5.	Total Ash and Organic Matter content	125
	1.4.6.	Nitrogen Free Extract content	129
	PART TWO		133
	2.1.	Artichoke and Pea Processing Residuals	133
	22	Summer Trial	135

	P	age			
2.2.1.	Food Processing Residuals Silage Characteristics	135			
2.2.2.	Body Weight Changes				
2.2.4.	Dry Matter Intake	140			
2.2.5.	Daily Crude Protein Intake	146			
2.2.6.	Milk Yield and Milk Composition	149			
2.2.7.	Rumen Parameters	165			
2.2.8.	Blood Parameter	177			
2.2.9.	Efficiency of Milk Production from Byproducts	182			
2.2.10.	Economic Efficiency	190			
2.3.	The Winter Trial	193			
2.3.1.	Food Processing Residuals Silage Characteristics	193			
2.3.2.	Body Weight Changes	198			
2.3.4.	Dry Matter Intake	201			
2.3.5.	Daily Crude Protein Intake	204			
2.3.6.	Milk Yield and Milk Composition	207			
2.3.7.	Rumen Parameters	222			
2.3.8.	Blood Parameter	235			
2.3.9.	Efficiency of Milk Production from Byproducts	239			
2.3.10	Economic Efficiency	247			
PART THREE		251			
3.1.	Internal Markers	251			
3.2.	External Markers	255			
3.3.	Internal versus External Markers				
SUMMARY AND CONCLUSION					
REFERENCES	S	272			
APPENDIX		318			
AD ADIC CHASSADY					

LIST OF TABLE

		Page
Table (1)	Annual World Production of Carbohydrates in Waste from Crop Plants	8
Table (2)	Wastage of White Bread and Wheat Products Used in Its Preparation as Percentage of Weight of Edible Material Entering A Particular Stage of the Supply System	8
Table (3)	Waste of Potatoes as Percentage of Weight of Edible Material Entering A Particular Stage of the Supply System.	9
Table (4)	Wastage in Fruit and Vegetable Canning	9
Table (5)	Solid Waste – Canned and Frozen Vegetable and Fruit	10
Table (6)	Nutrient Losses in Vegetable Canning (%)	10
Table (7)	Material Discarded During Preparation of Food	12
Table (8)	Some Established and Potential Sources For Waste and Byproduct Utilization.	18
Table (9)	Classification of Silage Additives.	52
Table (10)	Some Factors Affecting Silage Quality and Silage Making.	67
Table (11)	Overall Effects of Conservation on Feeding Value.	89
Table (12)	Chemical Composition of the Control Groups Ration Ingredient.	93
Table (13)	Production Season, Duration and Type of Some Tested Canning Crops Residuals.	100
Table (14)	Percentage Wastes produced In Some Tested Canning Crops.	105
Table (15)	Moisture, Dry Matter and Chemical Analysis of Some Tested Canning Crops Residuals.	109
Table (16)	Data of Artichoke and Pea Processing Residuals.	134