NUMERICAL SIMULATION FOR THERMAL COMFORT USING CONDITIONED AIR THROUGH MIXING AND PERSONALIZED VENTILATION SYSTEMS IN FIELD ENVIRONMENTAL CHAMBER (FEC)

By

Eng. Hossam Awad El-Maghraby Abdelaal

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA – EGYPT

2014

NUMERICAL SIMULATION FOR THERMAL COMFORT USING CONDITIONED AIR THROUGH MIXING AND PERSONALIZED VENTILATION SYSTEMS IN FIELD ENVIRONMENTAL CHAMBER (FEC)

By

Eng. Hossam Awad El-Maghraby Abdelaal

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil Hassan Khalil Dr. Esmail Mohamed Ali El-Bialy
Dr. Omar Ahmed Huzayyin

Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA – EGYPT

2014

NUMERICAL SIMULATION FOR THERMAL COMFORT USING CONDITIONED AIR THROUGH MIXING AND PERSONALIZED VENTILATION SYSTEMS IN FIELD ENVIRONMENTAL CHAMBER (FEC)

By

Eng. Hossam Awad El-Maghraby Abdelaal

A Thesis Submitted to the

Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil Hassan Khalil

Thesis Advisor and Member

Prof. Dr. Mahmoud Ahmed Fouad Member

Prof. Dr. Osama Ezzat Abdel-Latif Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA – EGYPT

2014

Engineer: Hossam Awad El-Maghraby Abdelaal

Date of Birth: 01/11/1989
Nationality: Egyptian

E-mail: hossam.elmaghraby@eng.cu.edu.eg

Phone: 00201226703983

Address: 20 Fakhry El-Daly St, Faisal, Giza, Egypt

Registration Date: 01/10/2011

Awarding Date: / /

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil Hassan Khalil

Dr. Esmail Mohamed Ali El-Bialy

Dr. Omar Ahmed Huzayyin

Examiners: Prof. Dr. Essam E. Khalil Hassan Khalil

Prof. Dr. Mahmoud Ahmed Fouad

Prof. Dr. Osama Ezzat Abdel-Latif (Benha University)

Title of Thesis: NUMERICAL SIMULATION FOR THERMAL COMFORT USING CONDITIONED AIR THROUGH MIXING AND PERSONALIZED VENTILATION SYSTEMS IN FIELD

ENVIRONMENTAL CHAMBER (FEC)

Key Words: Conditioned Air, Personalized Ventilation, Mixing Ventilation, Thermal

Comfort, FEC, CFD

Summary:

Thermal comfort within a Field Environmental Chamber (FEC) office mockup was numerically simulated throughout the current study. The goal of this research was to determine the best scenario to provide conditioned supply of air and distribute it inside an office room by using Mixing Ventilation (MV) and Personalized Ventilation (PV) systems to create the best status of thermal comfort for a sitting occupant who is typing in front of a computer screen. Computational Fluid Dynamics (CFD) method was used and specifically ANSYS FLUENT 14.0 commercial package software to compare the thermal comfort conditions for the occupant with different strategies of air distribution with various flow rates either being used solely or concurrently. Thermal comfort mathematical indices like the Predicted Mean Vote (PMV) and the Predicted Percentage of Dissatisfied (PPD) were implemented in the software and their contours were shown to define the thermal comfort status more precisely. It was concluded that using PV systems to maintain thermal comfort conditions for a working office occupant can be very effective and an attractive solution for designers to consider in situations similar to the study.

ACKNOWLEDGMENT

In the beginning, I would like to thank The Almighty and Great ALLAH for his help, generous giving to me and for his guidance and reconcile throughout this work and my whole life.

I hereby would like to express my deep gratitude and thanks to Prof. Essam E. Khalil, Dr. Esmail M. A. El-Bialy and Dr. Omar A. Huzayyin for their support, continuous encouragement and distinctive supervision throughout the course of this work. They helped providing me with valuable advice and up to date technical references that were of great help in the present work. I am grateful to them, and to all my respectful professors, for mentoring me throughout my undergraduate and graduate study.

I would like to extend my gratitude to Dr. Waleed A. Abdelmaksoud for his valuable suggestions and noteworthy discussions and for supplying me with some of his publications. I would like to thank Eng. Fawzy Abd El Aziz and Eng. Ahmed Hossam Zaki as well for their great help in software technical issues, and Eng. Sherif Ibrahim for providing me with helpful research papers. Thanks are also extended to my friends and colleagues in Mechanical Power Engineering department for their encouragement and support.

Finally, I would like to thank my family for their great and continuous help and support they provided me to finish this work in a suitable form and my fiancée for her love and care.

TABLE OF CONTENTS

ACKNOWLEDGMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	x
LIST OF FIGURES	xi
NOMENCLATURE	xxiii
Greek Letters	xxiv
Superscripts and Subscripts	XXV
Abbreviations	XXV
ABSTRACT	xxvii
1. INTRODUCTION	1
1.1 General	1
1.2 Factors Influencing Thermal Comfort of Occupants	1
1.3 Thermal Comfort Models	2
1.3.1 Static Comfort Model: PMV/PPD	2
1.3.2 Adaptive Comfort Model	3
1.4 Ventilation in Offices	4
1.5 Types of Ventilation	4
1.5.1 Mixing Ventilation	4
1.5.2 Personalized Ventilation	5
1.6 Air Exchange Rate	7
1.7 Computational Fluid Dynamics (CFD)	8

1.8 Present Work	8
2. LITERATURE REVIEW	9
2.1. Personalized Ventilation	9
2.2. Mixing Ventilation	27
2.3. Using Personalized Ventilation and/or Mixing Ventilation for The Comfort within an Office Room	
3. GOVERNING EQUATIONS	48
3.1 Introduction	48
3.2 Mass Conservation Equation (Continuity Eqn.)	48
3.3 Momentum Conservation Equation	49
3.4 Energy Conservation Equation	49
3.5 Species Transport Equation	50
3.6 Turbulence Modeling Equations	51
3.6.1 Standard k-ε Model	52
3.6.2 RNG k-ε Model	53
3.6.3 Realizable k-ε Model	56
3.6.4 Definitions Applicable to k- ε Models	57
3.6.4.1 Modeling Turbulent Production in k- ε Models	57
3.6.4.2 Effect of Buoyancy on Turbulence in k- ε Models	58
3.6.4.3 Effect of Compressibility on Turbulence in k- ε Models	58
3.6.5 Wall Functions	59
3.6.5.1 Standard Wall Functions	60
3.6.5.1.1 Momentum	60
3.6.5.1.2 Energy	61
3.6.5.1.3 Species	62

3.6.5.1.4 Turbulence	62
3.7 PMV/PPD Comfort Model	63
4. GRID SENSITIVITY ANALYSIS AND VALIDATION	64
4.1 Present Case Study	64
4.2 Grid Sensitivity Analysis	65
4.3 Validation	69
4.3.1 Twin-Jet Impingement Model	69
4.3.2 Experimental Measurements in FEC	73
5. RESULTS AND DISCUSSION	78
5.1 New Features in the Present Model	78
5.1.1 Occupant Boundary Condition	78
5.1.2 Computer Hardware Boundary Conditions	78
5.1.3 Occupant Exhalation Boundary Conditions	79
5.2 Present Model Layout	79
5.3 Case Studies	81
5.4 The Effect of Mixing Ventilation Flow Rate (ACH)	85
5.4.1 Case 1 (6 ACH)	86
5.4.2 Case 2 (9 ACH)	93
5.4.3 Case 3 (12 ACH)	100
5.4.4 Case 4 (15 ACH)	107
5.4.5 Overview	114
5.5 The Effect of Personalized Ventilation Flow Rate (L/s)	114
5.5.1 Case 5 (1 L/s per ATD)	
5.5.2 Case 6 (1.5 L/s per ATD)	
5.5.3 Case 7 (2 L/s per ATD)	129

5.5.4 Case 8 (2.5 L/s per ATD)	135
5.5.5 Case 9 (3 L/s per ATD)	142
5.5.6 Case 10 (4 L/s per ATD)	148
5.5.7 Overview	154
5.6 The Effect of Combined MV and PV Flow Rates	154
5.6.1 Case 11 (6 ACH & 3 L/s per ATD)	155
5.6.2 Case 12 (9 ACH & 2.5 L/s per ATD)	162
5.6.3 Case 13 (12 ACH & 2 L/s per ATD)	168
5.6.4 Case 14 (15 ACH & 1.5 L/s per ATD)	175
5.6.5 Overview	181
5.7 The Effect of Changing the Exhaust Grills Locations	182
5.7.1 Case 15 (6 ACH with wall mounted exhaust grills)	183
5.7.2 Case 16 (9 ACH with wall mounted exhaust grills)	186
5.7.3 Case 17 (12 ACH with wall mounted exhaust grills)	189
5.7.4 Case 18 (15 ACH with wall mounted exhaust grills)	191
5.7.5 Case 19 (6 ACH & 3 L/s with wall mounted exhaust grills)	193
5.7.6 Case 20 (9 ACH & 2.5 L/s with wall mounted exhaust grills)	195
5.7.7 Case 21 (12 ACH & 2 L/s with wall mounted exhaust grills)	198
5.7.8 Case 22 (15 ACH & 1.5 L/s with wall mounted exhaust grills)	200
5.7.9 Overview	202
5.8 Cases with Best Thermal Comfort Conditions	202
6. CONCLUSIONS AND FUTURE WORK RECOMMENDATIONS	204
6.1 Conclusions	204
6.2 Recommendations for Future Work	206
REFERENCES	207
APPENDIX	211

LIST OF TABLES

Table 4.1: Comparison between numerical data of RKE model and experimental data of	•
air velocity (m/s) at positions 1 and 2 at 6 ACH	77
Table 4.2: Comparison between numerical data of RKE model and experimental data of	
air velocity (m/s) at positions 1 and 2 at 12 ACH	77
Table 5.1: All cases studied in the current research	81
Table 5.2: Case studies 1, 2, 3 and 4 to study the effect of MV ACH	86
Table 5.3: Case studies from 5 to 10 to study the effect of PV flow rate	15
Table 5.4: Case studies 11 to 14 to investigate the effect of combined MV and PV flow	
rates	55
Table 5.5: Case studies 15 to 22 to investigate the effect of changing the locations of	
exhaust grills18	33

LIST OF FIGURES

Figure 1.1: Fanger's PMV seven point scale	5
Figure 1.2: Acceptable operative temperature ranges for naturally conditioned spaces	5
Figure 1.3: Mixing ventilation within a space	7
Figure 1.4: Personalized ventilation in office	8
Figure 1.5: Personalized ventilation desktop air terminal devices	8
Figure 2.1: Examples of tested air supply terminal devices (ATDs)	12
Figure 2.2: The ventilation effectiveness obtained with the tested ATDs as a function the flow rate of personalized air under isothermal conditions	
Figure 2.3: Air conditioning and air distribution in field environmental chamber	14
Figure 2.4: Ductless PV system	15
Figure 2.5: Distribution of normalized concentration obtained at location I; the comparis made for RF (DV alone) and two cases with different combination personalized airflows under two displacement rates (60 and 80 L/s)	ıs of
Figure 2.6: Walking scenarios	17
Figure 2.7: Thermal mannequin in displacement room	18
Figure 2.8: Airflow velocity (m/s) contours in the ventilated room with personal airflow of 1.0 L/s	
Figure 2.9: A ventilation seat with an adjustable personalized air supply nozzle	19
Figure 2.10: FEC layout	20
Figure 2.11: Desk mounted PV	20
Figure 2.12: Photo of test room showing a PV duct serving the micro-environs surrounding an occupant	
Figure 2.13: The simulated HVAC system in an office	22
Figure 2.14: Field Environmental Chamber (FEC)	23
Figure 2.15: Geometry applied in Gambit 2.4	23
Figure 2.16: Office mock-up plan	24

Figure 2.17:	Details of the positioning of the round movable panel and the vertical degrille	
Figure 2.18:	FEC with instruments at a single workstation	.26
Figure 2.19:	The experimental set-up at workstation	.27
Figure 2.20:	Configuration of the simulated office	.28
Figure 2.21:	Mixing ventilation air distribution elements	.29
Figure 2.22:	Schematic of the two ventilated cases	.30
Figure 2.23:	Schematic of the used test facility	.31
Figure 2.24:	(a) The geometry of the full-scale test room, (b) Distribution of measurement points for contours of concentrations in the center plane of the test room	
Figure 2.25:	Detailed floor plans of the office building being studied	.33
Figure 2.26:	Typical rooms studied, (a) an office, (b) a classroom, (c) a retail shop, (d workshop	
Figure 2.27	: The used model test room, (a) schematic of the model test room and ventilation scheme, (b) Photo of the model test room	
Figure 2.28:	An example of a mesh generated by VortexIn [©]	37
Figure 2.29:	Side view of the test chamber, including air flow	38
Figure 2.30:	Schematic diagram for the apparatus with a distributed heating source a ventilation holes on the side of the tank	
Figure 2.31:	Schematic diagram for the apparatus with a localized source of buoyancy a ventilation holes on the side and base of the tank	
Figure 2.32:	Spreading of tracer gas near the mannequins being both the heat and tragas source, with displacement flow and mixing flow	
Figure 2.33:	Cross-section and construction of the wall of the test chamber	.41
Figure 2.34:	3-D view of two cubicles in the modeled office	.43
Figure 2.35:	South façade view of ED70 building	.45
Figure 2.36:	Office rooms analyzed in ED70 building (shaded in gray)	.45
Figure 2.37	7: (a) Frontal and top views of the proposed ceiling diffuser and computational domain	
Figure 2 38.	Graphical overview of experimental cases	48

Figure 2.39: Floor plan for the test room; the orange dots indicate the measurement stands and the gray hatched surfaces represent the plenum boxes
Figure 4.1: (a) FEC top view without office or mannequin [6], (b) FEC isometric view on ANSYS 14.0 after locating office and mannequin in the middle of the room.66
Figure 4.2: Views for the generated grid, (a) front view, (b) side view
Figure 4.3: Comparing velocity distribution over FEC length using different mesh sizes67
Figure 4.4: Comparing temperature distribution over FEC length using different mesh sizes
Figure 4.5: Comparing relative humidity (RH) distribution over FEC length using different mesh sizes
Figure 4.6: Twin-jet impingement model geometry and setup
Figure 4.7: Experimental measurements of twin-jet model at four different heights70
Figure 4.8: Simulation results of twin-jet normalized vertical velocity at y/Dj=-1.8671
Figure 4.9: Simulation results of twin-jet normalized vertical velocity at y/Dj=-5.5771
Figure 4.10: Simulation results of twin-jet normalized vertical velocity at y/Dj=-9.2972
Figure 4.11: Simulation results of twin-jet normalized vertical velocity at y/Dj=-1272
Figure 4.12: (a) Positions of transducers and mannequin within FEC, (b) Omnidirectional velocity transducer probes
Figure 4.13: Scaled residuals in CFD simulation of the 12 ACH case with RKE model74
Figure 4.14: Comparison of numerical results with experimental measurements in FEC at 6 ACH; (a) At position 1, (b) At position 2
Figure 4.15: Comparison of numerical results with experimental measurements in FEC at 6 ACH; (a) At position 1, (b) At position 2
Figure 5.1: Mean skin temperature as a function of the activity level presented by metabolic rate
Figure 5.2: Layout of the final model of the office room
Figure 5.3: Position of sectional plane A-A within the office room model83
Figure 5.4: Position of sectional plane B-B within the office room model83
Figure 5.5: Position of sectional plane C-C within the office room model
Figure 5 6: Position of sectional plane D-D within the office room model

Figure 5.7: Pathlines of air from ceiling MV system at 6 ACH colored by air velocity magnitude
Figure 5.8: Contours of air velocity magnitude in planes C-C and D-D at the centers of the supply vents in case 1
Figure 5.9: Contours of air velocity magnitude in plane A-A within the office room in case 1
Figure 5.10: Contours of air velocity magnitude in plane B-B within the office room in case 1
Figure 5.11: Contours of air temperature in plane A-A within the office room in case 1
Figure 5.12: Contours of air temperature in plane B-B within the office room in case 1
Figure 5.13: Contours of PMV in plane A-A within the office room in case 190
Figure 5.14: Contours of PMV in plane B-B within the office room in case 190
Figure 5.15: Contours of PPD in plane A-A within the office room in case 191
Figure 5.16: Contours of PPD in plane B-B within the office room in case 191
Figure 5.17: Contours of relative humidity in plane A-A within the office room in case 192
Figure 5.18: Contours of relative humidity in plane B-B within the office room in case 192
Figure 5.19: Contours of air velocity magnitude in planes C-C and D-D at the centers of the supply vents in case 2
Figure 5.20: Contours of air velocity magnitude in plane A-A within the office room in case 2
Figure 5.21: Contours of air velocity magnitude in plane B-B within the office room in case 2
Figure 5.22: Contours of air temperature in plane A-A within the office room in case 296
Figure 5.23: Contours of air temperature in plane B-B within the office room in case 2
Figure 5.24: Contours of PMV in plane A-A within the office room in case 2

Figure 5.25: 0	Contours of PMV in plane B-B within the office room in case 297
Figure 5.26: 0	Contours of PPD in plane A-A within the office room in case 298
Figure 5.27: 0	Contours of PPD in plane B-B within the office room in case 298
Figure 5.28:	Contours of relative humidity in plane A-A within the office room in case 299
Figure 5.29:	Contours of relative humidity in plane B-B within the office room in case 2
•	Contours of air velocity magnitude in planes C-C and D-D at the centers of the supply vents in case 3
•	Contours of air velocity magnitude in plane A-A within the office room in case 3
· ·	Contours of air velocity magnitude in plane B-B within the office room in case 3
Figure 5.33:	Contours of air temperature in plane A-A within the office room in case 3
•	Contours of air temperature in plane B-B within the office room in case 3
Figure 5.35: 0	Contours of PMV in plane A-A within the office room in case 3104
Figure 5.36: 0	Contours of PMV in plane B-B within the office room in case 3104
Figure 5.37: 0	Contours of PPD in plane A-A within the office room in case 3105
Figure 5.38: 0	Contours of PPD in plane B-B within the office room in case 3
Figure 5.39:	Contours of relative humidity in plane A-A within the office room in case 3106
=	Contours of relative humidity in plane B-B within the office room in case 3106
•	Contours of air velocity magnitude in planes C-C and D-D at the centers of the supply vents in case 4
	Contours of air velocity magnitude in plane A-A within the office room in case 4
•	Contours of air velocity magnitude in plane B-B within the office room in case 4