180117

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

AN INVESTIGATION INTO THE CUTTING

PROCESS DYNAMICS IN TURNING

Thesis Submitted for
The Degree of Doctor of Philosophy

In

MECHANICAL ENGINEERING

Ву

2598°

MOHAMED ABD-EL SALAM ALI AHMED

M.Sc. Mechanical Engineer

1987

Supervisors:

1- Prof.Dr. SALAH EL-DIN M. EL-MAHDY.

Professor of Applied Mechanics and Machine Design, Faculty of Engineering, Ain Shams University.

2- Prof.Dr. M.A. EL-HAKIM

Professor of Production Engineering, Faculty of Engineering, Ain Shams University.

Examiners:

Signature

1- Prof.Dr. J.R. LONGVAL

Professor of Mechanical Engineering,

Ecole de Genie, Universite de Moncton.

Canada.

2- Prof.Dr. IBRAHIM FAWZI ABDEL-WAHED

Professor of Applied Mechanics,
Faculty of Engineering, Cairo University.

3- Prof.Dr. M.A. EL-HAKIM

Professor of Production Engineering, Faculty of Engineering, Ain Shams University. Holisa Joines

CONTENTS

	Page
SUMMARY	i
NOMENCLATURE	vii
INTRODUCTION	1
CHAPTER 1: REVIEW OF LITERATURE.	
	3
- The cutting process as a closed loop system	16 16
- Effect of the relative vibration amplitude	10
on the uncut chip thickness	18
- The cutting force mechanism	21
- Nature of friction on the tool face	23
- Effect of vibrational energy on the	
<pre>mechanical properties of materials Effect of the vibration level on the cutting</pre>	24
forces	20
- Dynamic cutting force due to regeneration	28 30
 Dynamic cutting force due to the variation 	30
of the tool gaometry (rake and clearance	
angles)	30
- Dynamic cutting forces due to penetration	
resistance	35
Flank damping force.Modelling of the dynamic cutting force.	35
- Self excited force.	36 37
- Role of damping during cutting.	41
- The chatter loop	44
 Determination of the transfer function 	
of the closed loop system	45
- Calculation of the characteristic equation	48
- Calculation of the threshold of stability	49
CHAPTER 3: MATHEMATICAL MODELLING OF THE MACHINING	
SYSTEM	57
- Machining System Analysis:	57
- MFTW system analysis	58
- Fixed parameters	58
Time varying parameters.Nonlinear system parameters.	58
- The cutting process dynamics	58
 The cutting stiffness function. 	59 59
- Constant value function	59
- Random function	59
- Nonlinear function Random - nonlinear function	60
TAGIIQOM T NON Linear function	

		Page
	- The negative damping function	60
	- Constant value	60
	- Random function	60
	- Nonlinear function	60
	- Random and nonlinear function	61
	- Regenerative feedback function	63
	- The uncut chip thickness function	64
	- constant value	64
	 Gradually increased during the 	
	first workpiece revolution	64
	- The width of cut function	64
	- constant value	64
	 variable width of cut during first 	
	workpiece revolution	66
	 variable width of cut during 	
	successive revolutions	66
	The disturbance function	66
	- Pulse disturbance	66
	- Harmonic disturbance	69
	- Periodic disturbance	69
	- Random disturbance	69
_	Simulation of the machining system	69
CHAPTER	4: COMPUTER PROGRAM	77
_	Program flow charts	77
	"SIMUL" program	98
CHAPTER	5: THEORETICAL RESULTS	105
_	System response in standstill and idle	
	running conditions	107
_	System response in machining without	
	negative damping during the first workpiece	
	revolution	114
_	Investigation of the system response in	
	machining during the first workpiece	
	revolution (Negative damping and direct	
	feedback effect)	114
	- Linear MFTW system parameters, constant	
	width of cut and constant uncut chip	
	thickness	116
	- Linear MFTW system parameters with	
	a gradually increased widthof cut	119
	- Linear MFTW system parameters with	
	random cutting force coefficients	121
	- Linear MFTW system parameters with	
	parametric variations in damping and	
	stiffness	123

		Page
_	Response of nonlinear system during the	
	first workpiece revolution	123
_	Investigation of the system response during	
	successive workpiece revolutions	138
	 Response of the linear system with 	
	zero negative damping during	•
	successive workpiece revolutions	139
	- Effect of the different types of	
	disturbances on the system response Response of the linear MFTW system	140
	with negative damping during	
	successive revolutions	153
	- Response of the nonlinear system	133
	(generalized system)	160
	Effect of system nonlinearties on the	
	response to initial pulse disturbance	169
-	Effect of the system parameters and cutting	
	conditions on the response of the nonlinear	
	system (generalized MFTW system model)	174
	- Effect of the directional static	
	stiffness	174
	- Effect of the cutting variables	176
	-12000 01 the cutting variables	181
CHAPTER	6: EXPERIMENTAL TECHNIQUES	183
	Technical specifications of machine tool	103
	used	183
	Technical specifications of the cutting	
	tool used	183
_	Measurement of the spindle speed	184
-	Experimental test rig Dynamic testing of MFTW system	186
	- At standstill condition	188
	 Under idle running conditions 	188 192
_	Preparation of the workpieces used in	192
	the tests	194
_	Specifications of the MFTW systems used.	198
_	Effect of the width of cut on the vibration	
	amplitude	198
_	Determination of the dynamic cutting force	
	coefficients	204
	Negative damping coefficientCutting stiffness coefficient	204
	Measurement of the limiting width of cut	204
_	Determination of the damping during cutting	204
	- Factors affecting the damping during	
	cutting	207
	decrement of the parametric variations	- - • •
	in the system	213

P	age
- Measurement of the vibration wave form	
	17
CHAPTER 7: RESULTS AND DISCUSSION	19
conditions	19
- Cutting stiffness coefficient 2	27 27
- Effect of the cutting conditions on the	31
- Effect cl the cutting speed 2	36 36
- Determination of the limiting width of	39
 Determination of the limiting width of cut on the MFTW systems using original 	42
	42 45
	47
damping 2	47
- Determination of the flank damping	47
- Effect of the cutting conditions	50
- Determination of a dimensionless relation- ship of the threshold of stability (0-v)	50
- Determination of (b _{lim} -v) relation ship	60
- Comparison between theoretical and	60
- The limiting width of cut 26	66 66
mt 't 'r 'a	6 9
CONCLUSION 2	74
	81
APPENDICES	90

NOMENCLATURE

Symbol	Computer symbol	Units.	Definition
- 4.3	_		B Constitution of the proton
A ₁ (t)	Al(I)		Damping function of the system
- (.)	20171		response.
A ₂ (t)	A2(I)		Stiffness function of the system
,			response.
b	B	mm	Width of cut.
b _{lim}	Blim	mm	Limiting width of cut. Time function of the width
b(t)	B(t)	mm	Time function of the width of cut.
	30	N- /	
c_{o}	СО	Ns/mm	The system damping coefficient at standstill or idle running
			at standstill or idle running conditions.
С	С	Na /mm	Total positive damping of the
C	C	Ns/mm	MFTW system during cutting.
C.	C'T	Ns/mm	Total damping of the MFTW system
c_{t}	CI	MS/ mm	at any width of cut.
Δc_{o}	DCO	Ns/mm	Variation of the damping around
100	БСО	HS/ mm	the workpiece spindle system.
đ	đ	mm	Workpiece diameter
F _C	u.	N	Main static cutting force
- C		.,	component.
F _t		N	Static feed force component
$\mathbf{\hat{f}_{c}(t)}$		N	Main dynamic cutting force
C /			component.
F _t (t)		N	Dynamic cutting force component
C			in feed direction*.
F(X)		N	Dynamic cutting force due to
			the relative vibration velo-
			city * X.
F(X)		N	Dynamic cutting force due to
			the relative vibration displace-
			ment * X.
$\widetilde{\mathbf{F}}_{\mu}(\mathbf{x})$		N	Dynamic cutting force due to
•			the regenerative effect*.

^{*} In the direction of the uncut chip thickness.

°F(≪)		N	Dynamic cutting force due to
			the variation of the clearance
			angle*.
$\widetilde{\mathbf{F}}(\delta_{\mathrm{e}})$		N	Dynamic cutting force due to
			the variation of the rake angle*.
$\widetilde{F}_{g}(\dot{x})$		N	Dynamic cutting force due to
•			the variation of the tool geo-
			metry with * X.
$\widetilde{F}_{\mathbf{p}}(\mathbf{t})$		N	Dynamic cutting force due to
_			the penetration resistance*.
$\widetilde{F}_{Rt}(t)$	FR(I)	N	Resultant dynamic force.
$\mathbf{f}_{\mathbf{n}}$	FN	Hz	System natural frequency.
h	H	mm	Instantaneous chip thickness.
h_{O}	НО	mm	Uncut chip thickness.
h _O (t)	H(I)	mm	Uncut chip thickness function.
K _m (t)	KM(I)		stiffness function.
K _m	KM	N/mm	Static stiffness.
$\kappa_{\mathbf{d}}$	KD	N/mm	Dynamic stiffness.
κ_{dm}	KDM	N/mm²	Dynamic stiffness corresponding
			to the maximum negative real
			part of the harmonic response
			locus for the MFTW system.
K *d	KD1	N/mm	Modified dynamic stiffness.
K**d	KD2	N/mm²	The modified dynamic stiffness
			corresponding to $\kappa_{ ext{dm}}.$
m	_	g	Equivalent mass of MFTW system.
n	n	rpm	Workpiece rotational speed.
D1	D1	N	Pulse disturbance level.
D1(t)	D1(I)	N	Disturbance function.
$\mathbf{F_O}$	F_{O}	N	Amplitude of harmonic disturbance
			function.
R	R		Ratio between the specific
			negative damping and the specific
			cutting stiffness coefficients.
$\mathbf{r}_{\mathbf{d}}$	_	Ns/mm	Damping coefficient due to
			penetration resistance.
r _f	Rf	Ns/mm	Flank damping coefficient.

^{*} In the direction of the uncut chip thickness.

r*h RHI N/mm² Specific cutting stiffness coefficient. rh(t) RH(I) N/mm Cutting stiffness function. rs N/mm Cutting stiffness coefficient due to the penetration resistance. rv RVO Ns/mm Negative damping coefficient. rv* RV1 N/mm² Normalized specific negative damping coefficient. rv* RV2 Ns/mm² Specific negative damping coefficient. rv(t) RV(I) Ns/mm Positive damping coefficient cient. rv(t) RV(I) Ns/mm Positive damping coefficient due to the variation clearance angle with the vibration velocity * X. rs Ns/mm Face damping due to the variation of the rake angle with the vibration velocity * X. So mm/rev Feed. t T s System response time. Tl Tl S Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) µm Relative vibration displacement between the tool and workpiece in the horizontal direction*. Xw(t) Vibration displacement of the workpiece in the horizontal direction.	$r_{\mathbf{h}}$	RHO	N/mm	Cutting stiffness coefficient.
rh(t) RH(I) N/mm Cutting stiffness function. rs N/mm Cutting stiffness coefficient due to the penetration resistance. rv RVO Ns/mm Negative damping coefficient. rv* RV1 N/mm² Normalized specific negative damping coefficient. rv* RV2 Ns/mm² Specific negative damping coefficient. rv(t) RV(I) Negative damping function rox Ns/mm Positive damping coefficient due to the variation clearance angle with the vibration velocity * X. r8 Ns/mm Face damping due to the variation of the rake angle with the vibration velocity * X. So mm/rev Feed. t T s System response time. T1 T1 s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v w m/min Cutting speed. X(t) X(I) µm Relative vibration displacement between the tool and workpiece in the horizontal	$r^{\star}h$	RH1	N/mm²	
rs N/mm Cutting stiffness coefficient due to the penetration resistance. rv RVO Ns/mm Negative damping coefficient. rv* RV1 N/mm² Normalized specific negative damping coefficient. rv* RV2 Ns/mm² Specific negative damping coefficient. rv(t) RV(I) Negative damping function rα Ns/mm Positive damping coefficient due to the variation clearance angle with the vibration velocity * x'. rb Ns/mm Face damping due to the variation of the rake angle with the vibration velocity * x'. So mm/rev Feed. t T s System response time. T1 T1 s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) μm Relative vibration displacement between the tool and workpiece in the horizontal direction*. Xw(t) Vibration displacement of the workpiece in the horizontal				
N/mm Cutting stiffness coefficient due to the penetration resistance. Tv	r _h (t)	RH(I)	N/mm	Cutting stiffness function.
due to the penetration resistance. Tv RVO Ns/mm Negative damping coefficient. Tv* RV1 N/mm² Normalized specific negative damping coefficient. Tv** RV2 Ns/mm² Specific negative damping coefficient. Tv(t) RV(I) Negative damping function To Ns/mm Positive damping coefficient due to the variation clearance angle with the vibration velocity * ½. Ts Ns/mm Face damping due to the variation of the rake angle with the vibration velocity * ½. So mm/rev Feed. T S System response time. Tl Tl S Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. V V m/min Cutting speed. X(t) X(I) µm Relative vibration displacement between the tool and workpiece in the horizontal	r_s		N/mm	
rv RVO Ns/mm Negative damping coefficient. rv* RV1 N/mm² Normalized specific negative damping coefficient. rv** RV2 Ns/mm² Specific negative damping coefficient. rv(t) RV(I) Ns/mm Positive damping function rα Ns/mm Positive damping coefficient due to the variation clearance angle with the vibration velocity * ½. rδ Ns/mm Face damping due to the variation of the rake angle with the vibration velocity * ½. So mm/rev Feed. t T s System response time. T1 T1 s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) μm Relative vibration displacement between the tool and workpiece in the horizontal direction*. X _w (t) μm Vibration displacement of the workpiece in the horizontal				
ry* RV1 N/mm² Normalized specific negative damping coefficient. ry** RV2 Ns/mm² Specific negative damping coefficient. ry(t) RV(I) Negative damping function rox Ns/mm Positive damping coefficient due to the variation clearance angle with the vibration velocity * ½. rby Ns/mm Face damping due to the variation of the rake angle with the vibration velocity * ½. So mmm/rev Feed. t T s System response time. T1 T1 s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) µm Relative vibration displacement between the tool and workpiece in the horizontal				
rv* RV1 N/mm² Normalized specific negative damping coefficient. rv** RV2 Ns/mm² Specific negative damping coefficient. rv(t) RV(I) Ns/mm Positive damping function rox Ns/mm Positive damping coefficient due to the variation clearance angle with the vibration velocity * x. rv Ns/mm Face damping due to the variation of the rake angle with the vibration velocity * x. so mmm/rev Feed. t T s System response time. Tl Tl s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) µm Relative vibration displacement between the tool and workpiece in the horizontal direction*. Xw(t) µm Vibration displacement of the workpiece in the horizontal direction.	$\mathtt{r}_{\boldsymbol{v}}$	RVO	Ns/mm	Negative damping coefficient.
RV2 Ns/mm² Specific negative damping coefficient. rv(t) RV(I) Ns/mm Positive damping coefficient due to the variation clearance angle with the vibration velocity * x'. rγ Ns/mm Face damping due to the variation of the rake angle with the vibration velocity * x'. So mm/rev Feed. t T s System response time. Tl Tl s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) μm Relative vibration displacement between the tool and workpiece in the horizontal	$\mathbf{r_v}^{\star}$	R V 1	N/mm²	
ry(t) RV(I) RV(I) Negative damping function rox Ns/mm Positive damping coefficient due to the variation clearance angle with the vibration velocity * x'. r8 Ns/mm Face damping due to the variation of the rake angle with the vibration velocity * x'. S Laplace operator. So mm/rev Feed. t T s System response time. Tl Tl s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) µm Relative vibration displacement between the tool and workpiece in the horizontal direction*. Xw(t) µm Vibration displacement of the workpiece in the horizontal				
ry(t) RV(I)	r _v **	RV2	Ns/mm²	Specific negative damping coeffi-
Ns/mm Positive damping coefficient due to the variation clearance angle with the vibration velocity * x̄. Ns/mm Face damping due to the variation of the rake angle with the vibration velocity * x̄. So mm/rev Feed. t T s System response time. Tl Tl s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) µm Relative vibration displacement between the tool and workpiece in the horizontal direction*. Xw(t) µm Vibration displacement of the workpiece in the horizontal				
due to the variation clearance angle with the vibration velocity * x'. r8 Ns/mm Face damping due to the variation of the rake angle with the vibration velocity * x'. So mm/rev Feed. t T s System response time. T1 T1 s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) µm Relative vibration displacement between the tool and workpiece in the horizontal	$r_{\mathbf{V}}(t)$	RV(I)		Negative damping function
due to the variation clearance angle with the vibration velocity * x̂. Ns/mm Face damping due to the variation of the rake angle with the vibration velocity * x̂. So mm/rev Feed. t T s System response time. Tl Tl s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) µm Relative vibration displacement between the tool and workpiece in the horizontal direction*. Xw(t) µm Vibration displacement of the workpiece in the horizontal	r∝		Ns/mm	Positive damping coefficient
rg Ns/mm Face damping due to the variation of the rake angle with the vibration velocity * x̄. So mm/rev Feed. t T s System response time. Tl Tl s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) μm Relative vibration displacement between the tool and workpiece in the horizontal				
rg Ns/mm Face damping due to the variation of the rake angle with the vibration velocity * ½. S Laplace operator. So mm/rev Feed. t T s System response time. Tl Tl s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) µm Relative vibration displacement between the tool and workpiece in the horizontal direction*. Xw(t) µm Vibration displacement of the workpiece in the horizontal				
of the rake angle with the vibration velocity * \(\). So				
of the rake angle with the vibration velocity * x̂. S	r		Ns/mm	Face damping due to the variation
So mm/rev Feed. t T s System response time. Tl Tl S Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) μm Relative vibration displacement between the tool and workpiece in the horizontal direction*. Xw(t) μm Vibration displacement of the workpiece in the horizontal				<u> </u>
mm/rev Feed. t T s System response time. Tl Tl s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) µm Relative vibration displacement between the tool and workpiece in the horizontal direction*. Xw(t) µm Vibration displacement of the workpiece in the horizontal				
t T s System response time. Tl Tl s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) µm Relative vibration displacement between the tool and workpiece in the horizontal direction*. Xw(t) µm Vibration displacement of the workpiece in the horizontal	S			Laplace operator.
T1 T1 s Disturbance time duration. U U N Input force to the system. U(t) U(I) N Input force function. V V m/min Cutting speed. X(t) X(I) µm Relative vibration displacement between the tool and workpiece in the horizontal direction*. Xw(t) Vibration displacement of the workpiece in the horizontal	So		mm/rev	Feed.
U U IN Input force to the system. U(t) U(I) N Input force function. V V m/min Cutting speed. X(t) X(I) μm Relative vibration displacement between the tool and workpiece in the horizontal direction*. X _W (t) μm Vibration displacement of the workpiece in the horizontal	t	T	S	System response time.
U(t) U(I) N Input force to the system. V V m/min Cutting speed. X(t) X(I) μm Relative vibration displacement between the tool and workpiece in the horizontal direction*. X _W (t) μm Vibration displacement of the workpiece in the horizontal	T1	Tl.	s	Disturbance time duration.
U(t) U(I) N Input force function. v v m/min Cutting speed. X(t) X(I) μ m Relative vibration displacement between the tool and workpiece in the horizontal direction*. Xw(t) μ m Vibration displacement of the workpiece in the horizontal	U	U	N	Input force to the system.
X(t) X(I) μm Relative vibration displacement between the tool and workpiece in the horizontal direction*. $X_{\mathbf{W}}(t)$ μm Vibration displacement of the workpiece in the horizontal	U(t)	U(I)	N	
between the tool and workpiece in the horizontal direction*. $X_{\mathbf{W}}(t) \hspace{1cm} \mu \mathbf{m} \hspace{1cm} Vibration \hspace{1cm} displacement \hspace{1cm} of \hspace{1cm} the \hspace{1cm} workpiece \hspace{1cm} in \hspace{1cm} the \hspace{1cm} horizontal$		v	m/min	Cutting speed.
between the tool and workpiece in the horizontal direction*. $X_{\mathbf{W}}(t) \hspace{1cm} \mu m \hspace{1cm} \text{Vibration displacement of the workpiece in the horizontal}$	X(t)	X(I)	μm	Relative vibration displacement
in the horizontal direction*. $ X_{\mathbf{W}}(t) \qquad \qquad \mu m \qquad \begin{array}{c} \text{ in the horizontal direction*.} \\ \text{Vibration displacement of the} \\ \text{workpiece in the horizontal} \end{array} $				
$X_{\mathbf{W}}(t)$ μm Vibration displacement of the workpiece in the horizontal				
The Devictor	X _W (t)		μm	
direction*.				workpiece in the horizontal
$X_t(t)$ µm Vibration displacement of the	X _t (t)		μm	Vibration displacement of the
tool in the horizontal				
direction*.				

^{*} In the direction of the uncut chip thickness.

$x_d(t)$		μm	Vibration displacement due
			to the disturbance in the (X)
•			direction*.
χ(t)	XD(I)	mm/s	Relative vibration velocity
			between the tool and workpiece*.
Y(t)		μm	Relative vibration displacement
			between the tool and workpiece
			in the vertical direction**.
Y _w (t)		μm	Vibration displacement of the
			workpiece in the vertical
			direction**.
Y _t (t)		μm	Vibration displacement of the
			tool in the vertical direction**.
Y _d (t)		μm	The vibration displacement
			of the MFTW system due to the
			disturbance in the vertical
-			direction**.
$\delta_{\mathbf{f}}$	Df		Damping ratio due to the flank
~			damping.
δ_{t}	DT		Total damping ratio during
~			cutting at any width of cut b.
δ	D		Total positive damping ratio
			during cutting.
₩ ~~		rad/s	Angular frequency.
ნ _£		N/mm²	Normal stress on the tool face
6 ∕			Normal stress on the shear
au		, ,	plane.
$ au_{ exttt{f}}$		N/mm²	Shear flow stress on the tool
$ au_{arphi}$		NY / 2	face.
		N/mm²	Shear stress on the shear plane.
∝ ∝ _e β		[0]	Clearance angle.
G e		[0]	Effective clearance angle.
8		[o]	Friction angle.
გ გ		[o]	Rake angle.
Ø		[o]	Effective rake angle.
*		[o]	Shear planeangle.

In the direction of the uncut chip thickness.The direction of the main cutting force.

μ_1	-		Coefficient of friction on
			the tool face.
μ	MEUI		Overlap factor.
ン	NUI		Phasing factor.
Θ	-	[0]	Phase angle between upper and
			lower chip surfaces.
λ_{c}			Chip compression ratio.
$\delta_{\mathbf{o}}$	DO		Damping ratio of MFTW system
			at stand still condition.
j			√ −1
$\boldsymbol{\tau}$			1/n

15

SUMMARY

Machine tool chatter is an undesirable phenomenon usually encountered in machining due to its adverse effects on the cutting tool, machine tool and workpiece. The explanation of machine tool instability and hence the prediction of the stability conditions are based on the correct description of the cutting process dynamics. The aim of the present investigation is therefore to establish a generalized mathematical model of the machining process in turning taking into consideration the probable factors affecting the stability of the machining system.

overall cutting system was investigated The applying the system theory approach. Both the cutting process and the machine tool dynamics were represented by a feedback loop system with three feedback paths reflecting the mutual interaction between the cutting process and the machine tool. The total dynamic cutting force was represented by its individual coefficients; negative damping coefficient (r_v) , cutting stiffness coefficient (rh) and flank damping coefficient (rf). The different factors affecting the dynamic cutting force coefficients were investigated. The was simulated on the digital computer to study its performance under different conditions such as for example the different types of disturbances encountered machining, cutting conditions, nonlinearities and parametric variations of the systems. As a start an idealised linear model was studied for the sake

of comparison with the generalized system incorporating nonlinear, random and parametric variations. The investigation was carried out at both stable and unstable conditions to study the performance before-and during chatter respectively.

In order to explain the different dynamic phenomena involved in citting such as for example; the occurrence of chatter in the cases where the cutting tool does not overlap surface undulations (absence of regenerative effect) e.g. during the first workpiece revolution and thread cutting, chatter onset due to an impulsive force in initially stable systems ..., etc., the effect of each of the three feedback paths was considered separately as far as such separation did not affect their usual interaction in practice. Such separation has been made quite easy through the use of the developed simulation technique.

The present work covers the investigation of the performance of the following MFTW systems, open loop system (standstill-and idle running conditions), closed loop system with direct feedback path only, closed loop with direct-and negative damping feedback paths (thread cutting or turning during the first workpiece revolution), closed loop with both direct-and regenerative feedback paths and finally closed loop system with direct-, negative damping-and regenerative feedback paths (generalized system in usual successive revolutions).

^{*} Machine - Fixture - Tool - Workpiece system.

iii

The results of the study reveal that, instability of machining systems during the first workpiece revolution may occur due to the negative damping coefficient alone for both linear and nonlinear systems. different types oi. disturbances (impulserperiodic and random) affected the stability conditions for The nonlinear systems only. harmonic disturbance with the system natural frequency excites the linear system at its resonance frequency but did not affect its stability limit.

/A method has been developed for the prediction of the stability conditions based on the negative damping effect, being the main cause of machine tool instability, taking into consideration the operative receptance during cutting.

An experimental investigation was carried out to evaluate the coefficients required in the theoretical investigation and to verify the theoretical results. The determination of the dynamic cutting force coefficients and the system parameters apart from the variation of the machine tool flexibility during carriage movement, implied the development of a special flexible tool holder (FTH) with a sufficiently low dynamic stiffness compared to that of the machine tool workpiece system.

/ The developed mathematical models were applied
to three different MFTW systems, varying widely in
their dynamic characteristics, which were obtained
by the impulse technique using a two channel FFT