Ain Shams University

Faculty of Engineering

Performance Evaluation of Artificial Intelligence **Computer Systems**

A thesis submitted for the degree of Ph.D. in Electrical Engineering (Computers & Systems Dept.)

by

Eng. Mohammed Nour El - Sayed Ahmed

Supervised by

Prof. Dr. Mohammed Adeeb Riad Ghonaimy

621.38195. M. N. Professor of Computers & Manager of Information System Center Faculty of Engineering - Ain Shams University

Prof. Dr. Nadia Hamed Hegazi

Vice President of Electronics Research Institute & Chairman of Informatics Research Dept.

Dr. Olfat Hussein Abdel - Monsef

Assoc. Prof. Computers & Systems Dept. Electronics Research Institute

Cairo - 1993

EXAMINERS COMMITTEE

1- Prof.Dr. Fathi H. Saleh

Signature 1.5.ll

Professor of Computers,

Faculty of Engineering, Cairo University.

2- Prof.Dr. Osman A. Badr

4- Bed

Professor of Computers,

Faculty of Engineering, Ain Shams University.

3- Prof .Dr. M.A.R. Ghonaimy

M.A.K. Shonain

Professor of Computers,

Faculty of Engineering, Ain Shams University.

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Ph. D. in Computer Engineering.

The work included in this thesis was carried out by the author in the Informatics Research Department, Electronics Research Institute, from June 1988 to April 1993.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institute.

Date: 29/4/1993

Signature: Mohammed Nova

Name: MOHAMMED NOUR E / AHMED

ACKNOWLEDGMENT

I would like to acknowledge my thanks to Prof. Dr. MOHAMMED ADEEB RIAD GHONAIMY Professor of Computers and Manager of Information System Center at Faculty of Engineering, Ain Shams University for his supervision, unceasing encouragement, advices, and for providing me with the relevant literature as well as many useful discussions.

I wish to express my sincerest gratitude to Prof. Dr. NADIA HAMED HEGAZY Vice-President of the Electronics Research Institute at National Research Center and Head of Informatics Research Department for her advices, guidance in the supervision of this work, endless help, discussions, and for helping me to use the computer facilities.

Thanks also to Dr. OLFAT ABDEL-MONSEF Associate Professor at the Electronics Research Institute for her encouragement and her advices.

Finally, I can express my thanks to Dr. AYMAN I. EL-DESSOUKI Professor of Computers at the Electronics Research Institute, Dr. PHILIP C. TRELEVAN Professor of Computers at London College University-ENGLAND, Dr. KHAYRI ALY Professor of Computers & Logic Programming at Swedish Institute of Computer Science (SICS) in SWEDEN, Dr. FATMA OMARAA Lecturer of Computers at Faculty of Electronics Engineering-Monofia University, Dr. EHSAN M. ABED at the Electronics Research Institute, and Eng. EMAN S. MEKY at National Research Center for providing me with some literature.

Summary

This thesis deals with performance evaluation of Artificial Intelligence (AI) computer systems. Concentration was on parallel processing for AI applications using logic programming. The thesis starts with a study of AI application demands from computer systems. A study of the multiprocessor system architectures, and sources of parallelism in logic programming (PROLOG) such as OR, AND, UNIFICATION, and STREAM parallelism is included. The thesis then surveys some algorithms to execute logic programs using the multiprocessor system architecture specifically the SPLITTING, AURORA model, and MUSE model techniques. The three selected techniques were studied, simulated on the computer, and compared. The comparative study takes into account some criteria such as the speed-up, execution time, processor utilization, and overhead. It was noticed that the performance of the MUSE technique was better than the other two techniques.

As the communication between the Processing Elements (PEs) of the multiprocessor system is important, three topologies of the interconnection networks were considered namely, the common shared bus, the crossbar, and the multiple bus networks. It was noticed that the multiple bus networks show its advantages over the other two because of its reconfigurability and multiple data paths between the processors and the memories. The cost of the multiple bus interconnection networks hit a reasonable and optimal balance among the three selected techniques, i.e. the bandwidth, throughput, and cost show an optimal performance.

Also Parallel Unification Machines (PUMs) were considered to exploit the unification parallelism (fine grain parallelism). It was noticed that the speed-up is not appreciable w.r.t. the number of matching processors used. This is so because of the overhead time consumed in management and overcoming the problem of inconsistency. It was more beneficial to direct the interest to large grain parallelism, (AND/OR) parallelism, instead of the fine grain one. The MUSE technique was selected for modification. An execution model was proposed to exploit AND/OR parallelism in logic programs. Also two scheduling algorithms were applied on two different AI programs as workloads (natural language processing parser, and an animal recognition expert system). It was noticed that the performance of the proposed model to exploit the AND/OR parallelism was better than its corresponding in the MUSE model to exploit OR parallelism only.

The scheduling algorithm matching with the semantics of the PROLOG search technique gives better performance than the other scheduling techniques. Also if the number of PEs increases, the global overhead time consumed will also increase; the overhead time will degrade the system performance. It is not recommended to increase the number of PEs as much as possible in a multiprocessor system but it is better to use a reasonable number of PEs specially when speed-up saturates.

Finally, Parallel Inference Machines (PIMs) were also considered to exploit the AND/OR parallelism in logic programs. A selected computer diagnostic expert system was used as a workload. The workload contained a large knowledge base. From the analysis and practical results, it was noticed that the multiprocessor system performance using the same workload to exploit AND/OR parallelism was slightly better than the performance of the PIMs up to a certain limit of PEs (in the selected case 20 PEs). After that number, the performance of the PIM was better than the multiprocessor system if the number of PEs increases. In fact the reason for the above results comes from the complexity of the workload and from the management technique used.

In general, it is recommended to use PIMs or logic machines in AI applications containing a large knowledge base. i.e. it is better to use AI machines to execute the large AI applications. While it is better to use conventional multiprocessor systems for the conventional applications (or for applications containing a small knowledge base).

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING COMPUTER AND SYSTEMS ENGINEERING DEPARTMENT

Abstract of the Ph.D. thesis submited by:
Eng. Mohammed Nour Elsayed Ahmed

Title of thesis: Performance evaluation of the artificial

intelligence computer systems

Supervisors : Prof. Dr. Mohammed Adeeb Riad Ghonaimy

Prof. Dr. Nadia Hamed Mahmoud Hegazi

Dr. Olfat Hosain Abdel-Monsef

Registration date: 13/6/1988 Examination date: 20/4 /1993

ABSTRACT

This thesis deals with performance evaluation of A.I. computer systems. A MUSE model was modified to exploit both AND and OR parallelism in logic programs (PROLOG). The study showed improvement over using MUSE based only on OR parallelism. Parallel Inference Machines were also investigated and compared with conventional machines.

TABLE OF CONTENTS

CHAPTER 1	
INTRODUCTION & SYSTEM DESCRIPTION.	
Objective	1
Overview of thesis	4
AI applications	8
AI problem solving	10
Search trees	10
Search strategies	11
Symbolic Processing	17
Features of symbolic processing applications	17
Software architectures for symbolic processing	20
Hardware architectures for symbolic processing	23
Conclusions	31
CHAPTER 2	
PARALLEL PROCESSING	
Introduction	33
What is a parallelism	33
Levels of parallelism	34
Parallelism representation	35
Parallel computer structure	37
Pipeline computers	37
Array computers	39
Multiprocessor system	40
Parallelism in logic programs	40

41

Sources of parallelism in logic programs

OR-Parallelism	41
The multisequential machine	43
System architecture	43
Advangages of the OR-parallelism	45
AND-Parallelism	50
AND/OR process model.	51
Parallel-AND process.	52
Stream parallelism	57
Unification parallelism	58
Multiprocessor system consideration	59
Extensibility (or scalability)	59
Locality	60
Granularity of hardware	60
Parallel processing problems definition of logic programs	63
Conclusions	64
CHAPTER 3	
PERFORMANCE EVALUATION OF OR-PARALLELISM TECHNIQUES	
Introduction	66
Multiprocessor system architecture	67
Splitting technique	68
Execution model	69
Splitting scheduling strategy	70
Right-biased strategy algorithm	72
Aurora algorithm	74
MUSE approach to OR-Parallelism	77
Execution model	77
Incremental copying	79

Scheduling work algorithm
Natural Language Processing (NLP) parsing
The context free recursive NLP parser
Practical work results& conclusions
CHAPTER4
PARALLEL UNIFICATION MACHINES& INTERCONNECTION NETWORKS
Introduction
Objective
Machine architecture
Architectural model
Workload characterization
Applications
Robot application
Natural Language Processing application
Conclusions
CHAPTER 5
MODIFICATION AND PROPOSED EXECUTION MODEL FOR
EXPLOITING PARALLELISM IN LOGIC PROGRAMS
Introduction
AND/OR graph
Simple Depth-First-Search (PROLOG's search)
Sources of parallelism in logic programs
OR-Parallelism
AND-Parallelism
Disjoint subgoals
Shared variables
Deterministic function

Binding conflicts	115
Shared variables and synchronization problem	124
Proposed execution model for AND/OR parallelism	127
Memory space (WAM based)	134
Scheduling work	137
Scheduling objectives	138
First scheduling technique	140
Second scheduling technique	142
Workload characterization and benchmark programs	144
Natural Language Processing parsing (workload I)	145
Data structure for the NLP parsing based on WAM	145
Variables binding and dereferencing	146
Expert system (workload II)	149
Definition	149
Components of expert systems	149
Simulation work	154
Simulation program overview	156
Developing a multiprocessor system description	
to the simulator	158
Processing Elements	158
Transfer devices	161
Storage devices	162
Implementation of the selected workload	
on the simulator	162
Discussion of results	171
Conclusions	172

CHAPTER 6

PARALLEL LOGIC INFERENCE MACHINES

Introduction	175
The concepts of AI machines	176
Features of AI applications	177
Architectural concepts for AI computers	177
Parallel Inference Machines (PIMs)	179
The parallel inference machine architectures	181
Execution model	187
Address space management	192
Scheduling work algorithm	193
Computer diagnostic expert system workload	195
Simulating the parallel inference machine	201
Hardware implementation	202
Software implementation	205
Discussion of results	209
Conclusions	210
CHAPTER 7	
CONCLUSIONS& FUTURE RESEARCH	
Scope of work	213
Performance evaluation	215
Future research	219
REFERENCES	221
APPENDICIES	
Appendix A	235
Appendix B	251
Appendix C	262

CHAPTER ONE

INTRODUCTION & SYSTEM DESCRIPTION

CHAPTER (1)

INTRODUCTION & SYSTEM DESCRIPTION

1.1 OBJECTIVE

The aim of this research is the study of the performance evaluation of Artificial Intelligence (AI) computer systems. AI is the area of computer science concerned with the design of intelligent computer systems, namely systems exhibiting characteristics normally associated with human intelligence. AI applications have certain special demands from computer systems. These applications are usually characterized by the following: symbolic processing, nondeterministic computations, dynamic execution, large potential for parallel and distributed processing and knowledge management. One major factor supporting the adoption of AI systems generation are;

- 1- The handling of non-numerical data such as sentences, symbols, speech, graphics, and images is becoming increasingly important.
- 2- The processing tasks performed by computers are becoming more intelligent , moving from scientific calculations and data processing to AI applications. Some of those AI applications are expert systems , natural languages processing , machine learning , robotics , problem solving systems , and others.