

Ain Shams University Institute of Post-Graduate Childhood studies Medical Department

Prevalence of β-Thalassemia Carriers in Egyptian Population

Thesis

Submitted for Fulfilment of

Ph.D. Degree in Medical Childhood Studies

By

Adla Mohamed Rohi Auf

(M.B., B.Ch., M.Sc.)

Under Supervision of

Prof. Dr. Amal El-Beshlawy

Prof of Pediatrics

Faculty of Medicine

Cairo University

Prof. Dr. Azza Moustafa

Prof of Clinical Pathology

Faculty of Medicine

Cairo University

Prof. Dr. Normin Kaddah

Prof. of Pediatrics

Faculty of Medicine

Cairo University

Prof. Dr. Galila Mouktar

Prof. of Pediatrics

Faculty of Medicine

Ain-Shams University

1997

ACKNOWLEDGEMENT

In presenting this thesis, I would like to express my deepest gratitude to **Professor Dr. Amal El-Beshlawy**, Professor of Pediatrics, Cairo University for her kind supervision, and perceptive advice.

I am extremely grateful to **Professor Dr. Azza Moustafa** Professor of Clinical pathology, Cairo University for her precious guidance and unconditional support.

I would like to express the sincerest and deepest gratitude to **Professor Dr. Normin Kaddah**, Professor of Pediatrics, Cairo University for her constant supervision, her patience and her advice. I am always obliged to her.

I am deeply indebted to **Professor Dr. Galila Mouktar,**Professor of Pediatrics, Ain Shams University for her
knowledgeable suggestions and assistance.

I would like to thank all the staff and members of clinical and biochemical labs in "Abou-El-Reesh" Hospital who helped this work to be accomplished.

I owe a lot to all members of hematology clinic in Abou-El-Reesh Clinics, who made this work easier.

Finally, I would like to thank the 1100 child and parent who agreed to be part of this work, nothing could have been accomplished without their cooperation.

Table of Contents

		Page	
Ir	nroduction and aim of the work	1	
R	Review of literature		
•	Historical background	4	
•	Development of human hemoglobin	5	
•	Structure of hemoglobin		
	- Primary structure	8	
	- Secondary structure	9	
	- Tertiary and quaternary structure	10	
	- Structure of Protoheme	12	
•	Definition of thalassemia	16	
	- Nomenclature of thalassemia	16	
•	Genetics and biosynthesis of human hemoglobin	22	
•	Molecular pathology of thalassemia syndromes	28	
	1- Molecular pathology of β-thalassemia syndron	ne 28	
	- Molecular basis of Dominantly inherited β -		
	thalassemia and structural variants associated	l	
	with β-thalassemia phenotypes	34	
	- Silent β-thalassemia	35	
	- Molecular basis of β-thalassemia intermedia	35	
	- β -thalassemia mutations unlinked to the β -glob	oin	
	gene cluster	36	
	- δβ-thalassemia	36	
	- $\delta\beta$ -thalassemia like disorders due to two mutat	ions	
	in the 8-globin gene cluster	37	

		Page	
	- εγδβ-thalassemia	37	
	- Molecular basis of β-thalassemia in Egypt	38	
2-	2- Molecular pathology of the α-thalassemia syndrome		
3-	3- Thalassemic structural variants		
	- Hb lepore	40	
	- Hb E	41	
	- Hb Constant Spring	41	
4-	Hereditary persistence of fetal hemoglobin	42	
•	Pathophysiology of the thalassemias	45	
-	Imbalanced globin chain synthesis	45	
-	Causes of anemia	46	
- Persistent fetal hemoglobin production and cellular			
	heterogeneity	49	
-	Concequences of compensatory mechanisms for the		
	anemia	50	
-	Splenomegaly: dilutional anemia	50	
-	Abnormal iron metabolism	51	
-	Disordered red cell metabolism	52	
-	Clinical heterogeneity	53	
•	Clinical features of \beta-thalassemia	54	
_	Thalassemia Major	 54	
	Skeletal changes	55	
	Growth & sexual development	56	
	Pulmonary function	60	
	Hepatobiliary disease	60	

			Page
	•	Spleen & kidney	62
-	Tha	alassemia intermedia	63
-	Tha	alassemia minor	64
-	Tha	alassemia minima	65
•	Lab	oratory findings of the β-thalassemia syndromes	66
-	Tha	alassemia major	66
-	Tha	alassemia intermedia	68
-	Tha	alassemia minor	68
-	Tha	alassemia minima	70
•	Lat	poratory techniques for the diagnosis and differential	
	dia	gnosis of β-thalassemia	73
(1)		Hemoglobin Identification	73
	1-	Electrophoresis	74
	2-	Isoelectric focusing	74
	3-	Stability tests	75
	4-	High-performance liquid chromatography	75
	5-	Quantitation of HbA2	76
	6-	Distribution and quantitation of HbF in red cells	76
(2	2)	Direct DNA analysis	77
	1-	Polymerase chain reaction	77
	2-	Direct detection by restriction enzyme	77
	3-	Allle Specific Oligonucleotide Hyridization	78
	4-	Sequencing	78
	5-	Denaturing Gradient Gel Electrophoesis	79
	6-	Single Strand Confirmation Polymorphism	79
	7_	Inverse PCR	79

			Page		
•	Dif	ferential diagnosis of microcytic hypochromic anemi	ia 82		
•	Ма	nagement of β -thalassemia	90		
	1-	Transfusion therapy	90		
	2-	Iron chelation	96		
	3-	Splenectomy	101		
	4-	Bone marrow transplantation	102		
	5-	Gene manipulation, HbF augmentation and gene			
		replacement	103		
•	Pre	vention of thalassemia	105		
	1-	Screening for β-thalassemia-trait	107		
	2-	Prenatal diagnosis	110		
	3-	Genetic councelling	113		
		(1)Categories of concelees	114		
		(2) Guiding principles of genetic counseling	114		
		(3)Non-directive counseling	116		
	4-	Sensitization and information	116		
		- Targets	116		
		- Methods	117		
S	ubje	cts and Methods	119		
R	esul	ts	124		
D	iscu	ssion	185		
Summary					
-			202		
A	Abstract				
R	References				
Δ	Arabic Summary				

List of Abbreviations

A - = Anaemia of microcytosis

AG = Adenine - Guanine

AIDS = Acquired immune deficiency syndrome

ARC = Aids related complex

ASO = Allele specific oligonucleotide.

ATA = Adenine - thymine - Adenine

BMT = Bone marrow transplantation.

bp = Base pair

CAG = Cytosine-Adenine - Guanine

Cys = Cystine

D- = Development of Hb

DF = Discriminant function

DFO = Deferoxamine mesylate

DGGE = Denaturing Gradient Gel Electrophoresis

DNA = Deoxy ribonucleic acid

DV = Discriminant value

EDTA = Ethylenediamine-tetra-acetic-acid

EF = Ejection fraction

F.Hb = Fetal hemoglobin.

Fig. = Figure
FL = femtolitre

FS = Fractional shortening.

FSH = Follicle-stimulating hormone

G- = Genetics of thalassemia

g/dl = Gram per decilitre
GT = Guanine-thymidine

Hb = Hemoglobin

HBcAb = Hepatitis B core antibody

HBsAg = Hepatitis B surface antigen

HBV = Hepatitis B virus

Hct = Hematocrit

HCV = Hepatitis C virus

HIV = Human immuno-deficiency virus

HPFH = Heriditary persistence of fetal hemoglobin
HPLC = High performance liquid chromatography

IVS = Intervening sequence

Kb = kilobase

L- = Literature of thalassemia

LCR = Locus control region

LVEDD = Left ventricular end diastolic diameter

LVESD = Left venricular end systolic diameter

M - = Molecular Pathology

MCH = Mean corpuscular hemoglobin

MCHC = Mean corpuscular hemoglobin concentration

MCV = Mean corpuscular volume

mg/dl = Milligram per decilitre

mRNA = Messenger ribo nucleic acid.

P- = Prevention of thalassemia.

PCMB = Para chloro mercuribenzoate

PCR = Polymerase chain reaction

pg = Picogram

PMB = Para hydroxy mercuribenzoate

R- = Results

RBC = Red blood count

RFLP = Restriction fragment length polymorphism

RNA = Ribo nucleic acid

S- = Structure of Hb

Sd = Standard deviation

SGOT = Serum glutamic oxalacetic transaminase SGPT = Serum glutamic pyruvic transaminase

SI = Serum iron

SSCP = Single strand confirmation polymorphism

TIBC = Total iron binding capacity

TQ = Transfusion quotient

tRNA = Transfer ribonucleic acid

Try = Tryptophan
Tyr = Tyrosine

WHO = World Health Organization