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NOTATION

parameter in failure criterion, Eq. (5.3);

parameter in Eq. (4.16);

parameter in failure criterion, Eq. (5.3);

material constants in Eq. (4.16);

material elastic tensor in Eq. (5.11);

parameter in Eq. (5.4);

maximum grain size;

nominal diameter of reinforcing steel:

length;

concrete cover, see Fig. (2.26);

Young’s modulus,

Young’s modulus, see Fig. (5.8) and Eq. (5.8);

secant value of Young’s modulus at uniaxial compressive failure;
secant value of Young’s modulus at triaxial compressive failure;
initial Young’s modulus;

Young’s modulus, see Fig. (5.8) and Eq. (5.8);
Young’s modulus, see Fig. (5.8) and Eq. (5.8);

secant value of Young’s modulus;

force in reinforcing deformed bar:

compressive stress on crack surface (positive guantity);
tensile strength of concrete;

tangential bond modulus;

shear modulus of cracked concrete in Eq. (5.15);
Fracture energy;

the stiffness of spring in direction r;

the forces transferred by dowel action;

Central Library - Ain Shams University



Notation

1& k

RS S =

[
M 4

i

o, =first invariant of stress tensor;

nodal points;

cos 38 = (3¥3/2) (J,/1*%,) invariant;

second invariant of stress deviator tensor;

third invariant of stress deviator tensor;

factor which represents the etfect of the "detformity” (ribbed surface
configuration);

parameter in failure criterion, Eq. {4.12);

parameter infailure criterion, Eq. (4.12);

o, / o, ; ratio of uniaxial tensile to compressive strength;
embedment length of reinforcing steel bar;

total number of nodes on body '

number of nodes on body I"* inside the contact zone;

total number of nodes on body T'B;

number of nodes on body TF inside the contact zone;
compressive meridian;

the derivation of the elliptic curve;

confining pressure;

shear meridian;

tensile meridian;

body force, Eq. (3.32);

radius of cylider;

spring force between the nodal points i & k in direction r;

spring force between the nodal points 1 & k in direction t;

slip modulus;

surface .traction;

traction in direction i at the point P due to a unite load in direction
j at the point Q, Eq. (A.3);

displacement in direction i at the point P due to a unit load in
direction j at the point Q, Eq. (A.3);

shear stress on crack surfaces;
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Notation

W

Xip @i w,'}

X Uy and y,
a

O‘sb

crack width;

geometry, traction and displacement variation according to
interpolation functions respectively, Eq. (A.20);

the nodal values of the element, Eq. (A.20);

an angle between bond force & surface of reinforcing bar;
related rib area;

angle, see Fig. (4.10);

function in failure criterion, Eqgs. (4.11) and (4.12);

coefficient of friction between normal and tangential tractions,
Eq.(A.11);

initial friction coefficient, Eq. (A.13);

limit friction coefficient, Eq. (A.13);

(1/¥3) 1, ; invariant, see Fig. (4.10);

(2] ;invariant, see Fig. (4.10);

stress component perpendicular to the hydrostatic axis at 6 = 0°,
and 8 = 60° respectively in Eq. (4.16);

the curve of body, Eq. (A.1);

cylinder surface body A, Eq. (A.9);

cylinder surface body B, Eq. (A.9);

contact zone, see Fig. (A2} and Eq. (A.9);

plasticity index, Eq. (5.2);

radial displacement;

relative nodal displacement of the nodal points i & k in radial
direction;

the bar contraction;

axial displacement;

relative nodal displacement of the nodal points 1 & k in axial
direction;

residual tangential traction, see Fig. (A.4) and Eq. (A.16);

the incremental in tangential traction, see Fig. (A.4) and Eq.(A.17);

slip between reinforcing bar and concrete;

N-3

Central Library - Ain Shams University



Notation

o = virtual displacement increments, Eq. (3.32);
8, = theslip’ between steel and concrete at section x;
6y = virtual strain increment, Eq. (3.32);

£, £y &5 = principal strains (e, > €, 2 €4, elongation positive),
€, = strain at uniaxial compressive failure;

= shear retention factor, Eq. (5.15);

{(p,8) = polar coordinates;
o = yield stress, see Fig. (4.24) and Eq. (4.19);
oy = biaxial compressive strength;
eH = stress tensor, tensile stress positive;
Oy, Op O3 = principal streses;

= uniaxial compressive cylinder strength;

O = the mean stress;

o, = uniaxial tensile strength;

Ooet = octahedral normal stress;

Ty = bond stress at section X;

Ty, = radial bond stress;

Ty, = shear bond component;

T et = octahedral shear stress;

Tae = maximum bond stress;

v, = the effective slip, Eq. (A.13);

Vg = secant value of Poisson’s ratio at failure, Eq. (5.9);
v, = initial Poisson’s ratio, Eq. (5.9);

v, = secant value of Poisson’s ratio, Eq. (5.9);

& = diameter of steel bar;

U = theoretical or experimental constant;

¢ = theoretiacl or experimental constant;

Q = linear elastic body, Eq. (A.1);

o° = lingar elastic body A, Eq. (A.9);

QP = linear elastic body B, Eq. (A.9);

[B] = the strain-displacement matrix in Eq. (3.40);
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Notation

ChE

ke

{AR}
{aU}
{Ae}
tAa}

It

ft

elastic constitutive matrix;

material stiffness matrix for a linear isotropic material, in an
axisymmetric stress state;

the structural stiffness matrix in Eq. (3.45);

differential operator matrix, Eq. (3.41);

matrix of the displacement interpolation function;
transformation matrix;

element strain matrix;

element stress matrix;

equivalent force of stress acting on the nodal points, Eq. (3.49);
equivalent external force acting on the nodal points, Eq. (3.43);
vector for displacement;

displacement vector for nodal points;

vector for strain;

vector for dtress;

the load increment;

the displacement increment;

strain increment; and

stress increment.
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TERMINOLOGY

Anchorage

Anchorage device

Anchorage length

Beam test

Bond

Bond forces

Confining effects

Internal bond cracks

: Anchorage at the end of reinforcing bars makes it possible
that they can be taken Into consideration as tensile or a

compressive member in the reinforced concrete structure.

: Mechanical devices, usually used at the end of reinforcing
bars or prestressed tendons to anchor them over a very short
length.

+ Anchorage length measured from the butt end of the
reinforcing bar necessary to transfer a given force from the

bar to the concrete.

: A testing method proposed by Rilem to checkk the bond

characteristics of derformed reinforcement.

+ Interaction between reinforcement and surrounding

concrete.

: Forces between reinforcement and surrounding bars.

+ Effects - transversal compression or transverse
reinforcement - which influence the resistance of the

concrete to bursting or splitting forces.

: Internal bond cracks, that develope in the surrounding

corncrete starting from the top of the ribs surface of the bar.

Central Library - Ain Shams University



