PHAGOCYTIC FUNCTIONS CORRELATED WITH VITAMIN D LEVEL IN TUBERCULOSIS IN EGYPTIAN CHILDREN

THESIS

Submitted for the partial fulfilment of the

M.D. Degree in Pediatrics

ByEMAN MONIR SHERIF M.B., B.Ch., M.Sc.

Supervisors

PROF. DR. SAADIA MOHAMED ABD EL-FATTAH 51836

Professor of Pediatrics Faculty of Medicine - Ain Shams University

PROF. DR. KARIMA AHMED ABD EL-KHALIK

Professor of Pediatrics Faculty of Medicine - Ain Shams University

PROF. DR. LAILA ABD EL-AALA EL SHAWARBY

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

DR. ZEINAB ANWER EL-KABBANY

Assistant Professor of Pediatrics Faculty of Medicine - Ain Shams University

DR. MONA MOHAMED EL-TOBGUI

Assistant Professor in Child Health Laboratories National Research Center

> Faculty of Medicine Ain Shams University 1994

بسم الله الرحمن الرحيم
« وعلمك ما لم تكن تعلم
وكان فضل الله عليك عظيما »
ححق الله العظيم
(سورة النساء آية ١٦٣)

ACKNOWLEDGEMENT

I am greatly indebted to Prof. Dr. Saadia Mohamed Abd El-Fattah, Professor of Pediatrics, Ain Shams University, for this precious opportunity of working under her supervision. Working with her is all at once both pleasurable and educational. Her kind help, sound advice and guidance were indispensable for accomplishing this work.

I am also indebted to Prof. Dr. Karima Ahmed Abd El-Khalik, Professor of Pediatrics, Ain Shams University, for her valuable guidance, kind supervision and motivation to excel. I will always remember her prolific supervision and constructive criticism throughout this work.

Very special thanks go to Prof. Dr. Laila Abd El-Aala El Shawarby, Professor of Clinical Pathology, Ain Shams University. Her exemplary perseverance and meticulousness were crucial for the practical part of this work.

I wish to express my special thanks to Dr. Zeinab Anwer El-Kabbany, Assistant Professor of Pediatrics, Ain Shams University, for her kindness and generous help. I'll always cherish her care and advice in every step of this work.

I am also grateful to **Dr. Mona Mohamed El-Tobgui**, Assistant Professor at Child Health Laboratory, National Research Center, who carried the burden of the practical part of this work. Her valuable guidance and advice were essential for accomplishing this work.

I would also like to thank Dr. Nahla Zakaria, Lecturer of Clinical Pathology, Ain Shams University, who helped me much in the practical part of this work. Her enthusiasm and ardor are truly matchless.

CONTENTS

	Page
List of Abbreviations	
List of Tables	
List of Figures	
List of Coloured Plates.	
Introduction	1
Aim of the Work	3
Review of Literature	3
 Historical Review of Tuberculosis 	4
 Epidemiology of Tuberculosis in Egypt 	6
 The Changing Epidemiology of T.B. 	8
 Modes of Transmission of Tuberculosis 	10
 Pathogenesis of Tuberculosis 	13
 Factors Modifying the Course of Tuberculosis 	16
Pathology	26
 Immunology of Tuberculosis 	28
 Clinical Forms of Tuberculosis 	35
 Perinatally Acquired Tuberculosis 	54
 Diagnosis of Tuberculosis 	59
 Control of Tuberculosis 	77
 Prevention of Tuberculosis in Egypt 	79
 BCG Vaccination 	80
 Treatment of Tuberculosis 	86
Vitamin D	109
 The Role of Vitamin D in Tuberculosis 	127
 Vitamin D Metabolism in Tuberculosis 	137
 The Effect of Antituberculous Chemotherapy on 	
Vitamin D Metabolism	143
 Mononuclear Phagocytes 	148
 The Role of Mononuclear Phagocytes in Tuberculosis 	159
Subjects and Methods	167
Results	180
Discussion	247
Recommendations	
Summary and Conclusion	261 263
References	
Arabic Summary	267

LIST OF ABBREVIATIONS

AD Adenosine deaminase

AIDs Acquired immune deficiency syndrome

ALP Alkaline phosphatase

ALT Alanine aminotransferase

AST Aspartate aminotransferase

B.C. Before Christmas

BCG Bacille Calamette Guerin

C Complement

Ca²⁺ Calcium

CD Cluster differentiation
CR Complement receptor

CSF-1 Colony stimulating factor-1
DTH Delayed type hypersensitivity

ELISA Enzyme linked immunosorbent assay

ESR Erythrocyte sedimentation rate

Hb Hemoglobin

HBBS Hank's balanced salt solution

HIV Human immune deficiency virus

HLA Human leukocytic antigen

HPLC High performance liquid chromatography

IFN-γ Interferon gamma
IgG Immunoglobulin-G

IL-1 Interleukin-1
INH Isoniazid

IUATLD International Union Against Tuberculosis and

Lung Diseases

LPS Endotoxins

LIS		M. tuberculosis	Mycobacterium tuberculosis
		MNC	Mononuclear layer
		NK	Natural killer
Table (1):	Notified TB case	NO	Nitric oxide
	Egypt from the	OT	Old tuberculin
Table (2):	Estimated annua	PABA	Para-amino benzoic acid
	and deaths from	PASA	Para-amino salicylic acid
	(1985-1990).	PCR	Polymerase chain reaction
Table (3):	Impact of chron	PDD	Purified protein derivative
	immunity to exp	Phos	Phosphorous
Table (4):	Pediatric tuberc	PTH	Parathyroid thyroid hormone
Table (5):	Score for other t	RNI	Reactive nitrogen intermediate
Table (6):	Factors causing	T. bil	Total bilirubin
	tuberculin.	TB	Tuberculosis
Table (7):	To whom tuberc	TCR	T-cell receptor
Table (8):	Essentials of tul	TNF-α	Tumor necrosis factor-alpha
Table (9):	Localization of t	TU	Tuberculin unit
		VDR	Vitamin D receptor
Table (10):	Vitamin D anale known functions	WHO	World Health Organization
T 11 (11)		$1,25(OH)_2D_3$	1,25-dihydroxy cholecalciferol
	Mononuclear pl	<	Less than
Table (12):	Panoply of mone	>	More than
Table (13):	Parameters of tr		
Table (14):	Serum 1,25 (OI		
Table (15):	Cumulative data		
Table (16):	Biochemical pa after (2) treatme		
Table (17):	Parameters of p		
Table (18):	Comparison bety patients and the		

M. tuberculosis

Mycobacterium tuberculosis

		Page
Table (19):	Comparison between the different parameters of patients before (1) and after treatment (2).	207
Table (20):	Different parameters of group (I) before (1) and after (2) treatment.	208
Table (21):	Biochemical parameters of group (I) before (1) and after (2) treatment.	209
Table (22):	Phagocytic index, lytic index and 1,25(OH)2D3 of group (1) before (1) and after (2) treatment.	210
Table (23):	Comparison between the different parameters of Group (I) and the control group.	211
Table (24):	Comparison between the different parameters of Group (I) before (1) and after treatment (2).	212
Table (25):	Different parameters of group (II) before (1) and after (2) treatment.	213
Table (26):	Biochemical parameters of group (II) before (1) and after (2) treatment.	214
Table (27):	Phagocytic index, lytic index and 1,25(OH)2D3 of group (II) before (1) and after (2) treatment.	215
Table (28):	Comparison between the different parameters of Group (II) and the control group.	216
Table (29):	Comparison between the different parameters of Group (II) before (1) and after treatment (2).	217
Table (30):	Shows comparison between control group and patients groups as regards phagocytic and lytic	
	indices	218

LIST OF FIGURES

		Page
Fig. (1):	Pediatric tuberculosis flow chart.	62
Fig. (2):	Interaction of gamma interferon and vitamin D in tuberculosis.	129
Fig. (3):	The distribution of different T.B. cases.	219
Fig. (4):	A histogram showing comparison between the phagocytic index for patients before treatment and control group.	220
Fig. (5):	A histogram showing comparison between the lytic index for patients before treatment and control group.	221
Fig. (6):	A histogram showing phagocytic index for patients before and after treatment.	222
Fig. (7):	A histogram showing lytic index for patients before and after treatment.	223
Fig. (8):	A histogram showing comparison between the phagocytic index for group I of the patients before treatment and control group.	224
Fig. (9):	A histogram showing comparison between the lytic index for group I of the patients before treatment and the control group.	225
Fig. (10):	A histogram showing the phagocytic index for group I of patients before and after treatment.	226
Fig. (11):	A histogram showing the lytic index for group I of patients before and after treatment.	227
Fig. (12):	A histogram showing the phagocytic index for group II of the patients before treatment and control	
	group.	228

	·	Page
Fig. (13):	A histogram showing the lytic index for group II of the patients before treatment and the control group.	229
Fig. (14):	A histogram showing the phagocytic index for group II of patients before and after treatment.	230
Fig. (15):	A histogram showing the lytic index for group II of patients before and after treatment.	231
Fig. (16):	A histogram showing comparison between 1,25(OH)2D3 in patients before treatment and control group.	232
Fig. (17):	A histogram showing comparison between 1,25(OH)2D3 for group I of patients and control group.	233
Fig. (18):	A histogram showing 1,25(OH)2D3 before and after treatment for patients group.	234
Fig. (19):	A histogram showing 1,25(OH)2D3 before and after treatment for group I of patients.	235
Fig. (20):	A histogram showing comparison between 1,25(OH)2D3 for group II of patients and control group.	236
Fig. (21):	A histogram showing 1,25(OH)2D3 before and after treatment for group II of patients.	237
Fig. (22):	A scatter plot showing correlation between phagocytic index and duration of therapy.	238
Fig. (23):	A scatter plot showing correlation between lytic index and duration of therapy.	239
Fig. (24):	A scatter plot showing correlation between serum 1.25(OH)2D3 and phagocytic index	240

LIST OF COLOUR PLATES

		Page
Plate (1):	Test for monocytic phagocytosis of a normal child.	241
Plate (2):	Test for monocytic phagocytosis of a tuberculous patient before treatment.	242
Plate (3):	Test for monocytic phagocytosis of a tuberculous patient before treatment.	243
Plate (4):	Test for monocytic phagocytosis of a tuberculous patient before treatment.	244
Plate (5):	Test for monocytic phagocytosis of a tuberculous patient after treatment.	245
Plate (6):	Test for monocytic phagocytosis of a tuberculous patient after treatment.	246

Introduction

INTRODUCTION

Despite the existence of a vaccine and highly effective chemotherapy, tuberculosis today remains a major global health problem. The World Health Organization (WHO) calculates probably 8-10 million new cases a year in the world, and 3 million deaths (Crofton et al., 1992). One reason for the slow progress towards tuberculosis control has been the inadequacy of our understanding of the immune mechanisms that function in tuberculosis (Rook, 1987).

There is growing evidence that the immune responses to tuberculosis are regulated by various extrinsic and intrinsic immune modulators. Among the important extrinsic immune modulators is host resistance. Several conditions associated with reduced cellular immunity predispose to tuberculosis. Low vitamin D levels may be associated with unusual susceptibility to tuberculosis (*Onwubalili*, 1990).

Vitamin D therapy cured skin tuberculosis in the prechemotherapy era (*Dowling and Prosser Thomas*, 1946). There is evidence to suggest that vitamin D influences monocyte maturation and increases macrophage capacity for oxygen reduction by interferon activated macrophages, thus increases their inhibition of mycobacterium tuberculosis (*Rook et al.*, 1986). It has been found that exposure of macrophages to 1,25-dihydroxy cholecalciferol renders them more liable to release tissue damaging macrophage products including tumor necrosis factor (TNF) upon exposure to live mycobacterium tuberculosis. TNF together with interleukin-1 may account for fever and weight loss that characterize tuberculosis (*Rook et al.*, 1987).