SYSTEMIC CHEMOTHERAPY AND LIMITED CONVENTIONAL EXTERNAL BEAM IRRADIATION FOLLOWED BY INTERSTITIAL BRACHYTHERAPY IMPLANT BOOST IN TREATMENT OF ADVANCED CANCER OF THE HEAD AND NECK

THESIS SUBMITTED FOR PARTIAL FULFILLMENT OF M.D. DEGREE IN RADIOTHERAPY AND NUCLEAR MEDICINE

EHAB MOSTAFA MOHAMED M.B., B. CH., M.S.

UNDER SUPERVISION OF

Prof. DR. SALWA MASSOUD IBRAHIM

PROF. OF RADIATION ONCOLOGY AND NUCLEAR MEDICINE FACULTY OF MEDICINE-AIN SHAMS UNIVERSITY.

Prof. DR. A.M. NISAR SYED

CLINICAL PROF. OF RADIATION ONCOLOGY MEMORIAL CANCER INSTITUTE SCHOOL OF MEDICINE-UNIVERSITY OF CALIFORNIA-IRVINE

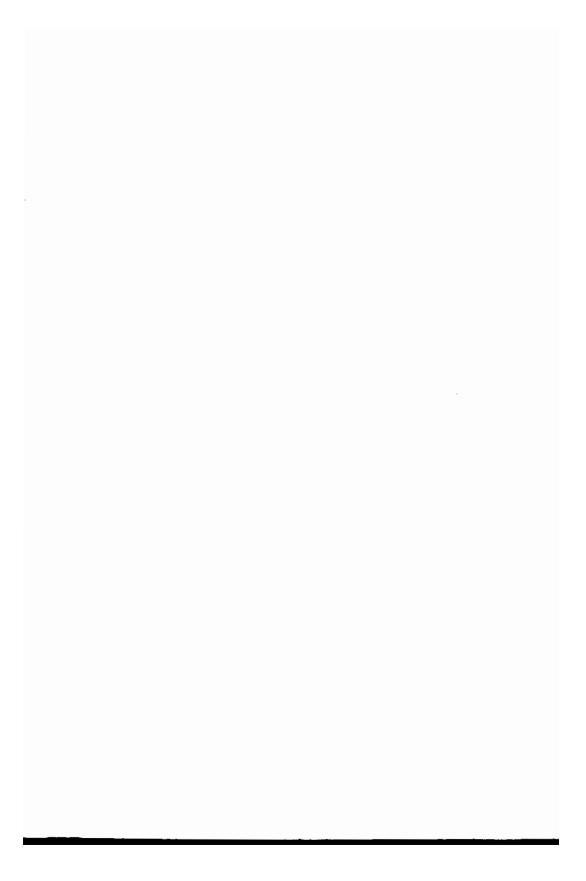
Prof. DR. SAMI AHMED EL-BADAWI

PROF. OF RADIATION ONCOLOGY NATIONAL CANCER INSTITUE CAIRO UNIVERSITY.

Prof. DR. MOHAMED OSMAN EL-KAHKY

PROF. OF OTORHINO LARYNGOLOGY FACULTY OF MEDICINE-AIN SHAMS UNIVERSITY.

Z. man and


DR. SOHEIR SYED ISMAIL

ASSISTANT PROF. OF RADIATION ONCOLOGY AND NUCLEAR MEDICINE

FACULTY OF MEDICINE-AIN SHAMS UNIVERSITY.

AIN SHAMS UNIVERSITY 1998

FACULTY OF MEDICINE

Contents

Acknow	ledgment	
Dedicati	•	
Introduc	ztion	
Abstract		
Part I:	Review:	
	Pathology	1-10
	Secondary primary tumor	11-14
	Molecular Biology	15-25
	Physical Examination and Biopsy	26-27
	Modern Imaging Studies	28-36
	Prognosis	37-44
	General Management	45-49
	Radiation	50-81
	Brachytherapy	82-102
		103-11
	Chemotherapy	
	Chemotherapeutic agents	115-12
	Management of neck lymph nodes	121-12
Part II:	Clinical	
	Materials and Methods	1-18
	Results	19-22
	Discussion	23-27
Part III:		1-33
Summai	•	200
	Summary	

List of Tables:

Table N0	Discription	Page (between)
	A) REVIEW	(000000)
₹-1	Histologic malignancy grading system	1-2
I-2	Representative Local Control Rates and Survival	37-38
	for patients with Squamous Cell Carcinoma of	
	common Head and Neck sites treated with	
	definitive Radiotherapy	•
I-3	General principle of irradiation dose	58-59
1-4	The physical properties of radionuclides	83-84
1-5	Distribution Rules for the Planer Implants	87
1-6	Rules of Interstitial Implant Systems	90-91
1-7	Dose Rates	92
1-8	Larger Randomized Controlled Trials That Have	110-111
	Evaluated the Role of Induction Chemotherapy in	
	Treatment of Patients With Locally Advanced	
	Cancer of the Head and Neck.	
1-9	Larger Randomized Controlled Trials That	110-111
	HaveCompared Radiation and Concurrent	
	Chemotherapy With Radiation Alone for	
	Primary Head and Neck Cancer.	
1-10	Sequential vs. Concomitant	110-111
1-11	Incidence of Lymph Node Metastasis by Site of	121-122
	Primary disease in Head and Neck Squamous	
	Cell Carcinoma	
I-12	Clinically Detected Nodal Metastasis on	121-122
	Admission by T stage	
I-13	radiation dose guidelines for radiation therapy	124
	alone for squamous cell carcinoma metastatic to	
	cervical lymph nodes.	
	B) CLINICAL	
II-1	Treatment Regimens	1-2
II-2	Pre-Treatment Patient Characteristics	19-20
11-3	Distribution of Patients According to TNM	19-20
	Classification	
11-4	Response to Chemotherapy	19-20
II-5	The Predictive Value of Response to Chemotherapy	19-20
	on Local Regional Control	
11-6	The Predictive Value of the Response to	19-20
	Chemotherapy on the 2-Year DFS and 2-	
	Year Survival	
117	Local Regional Control for Group A and B at the	20-21
	end of 12 months	

11-8	Correlation between the Locoregional control and different treatment parameters	20-21
II-9	Comparative study between the non responders to chemotherapy in group A versus the counterpart in those received radiation alone in retrospective group B	20-21
II-10	Analysis of Patterns of Failure at the end of the study	20-21
1)-11	Comparative study of the pattern of failure between the non responders to chemotherapy in group A versus the counterpart in those received radiation alone in retrospective group B	20-21
II-12	Cause of Death for 40 patients in each group that were evaluated for 2 years	21-22
11-13	The incidence of late sequalae (G III/VI) according to RTOG late radiation morbidity scoring system	21-22

List of Figures

Table N0	Discription	Page (between)
	A) REVIEW	
I-1	Squamous cell carcinoma	1-2
1-2	Superficial and deep lymph nodes	2-3
1-3	Verrucous carcinoma	4-5
I-4	Spindle cell carcinoma	6-7
1-5	Adenosqumous carcinoma	6-7
1-6	Basaloid carcinoma	7-8
1-7	Lymphoepithelioma	8-9
1-8	Molecular Progressive Model	25
1-9	CT and MRI of Oral cavity and Oropharynx	29-30
1-10	CT and MRI of Nasopharyx	30-31
I-11	CT and MRI of Larynx	32-33
I-12	CT and MRI of Neck Lymph Nodes	33-34
1-13-18	Radiobiology of Brachytherapy	93-94
	B)CLINICAL	
II-1-2	Simulation films for External Irradiation	4-7
II-3	Simulation films for Implant Volume in patients with cancer of Oral tongue	9-10
1I-4	Simulation films for Implant Volume in patients with cancer of Oropharynx	10-11
II-5	Simulation films for Implant Volume in patients with cancer of Nasopharynx	13-14
[1-6	Computerized Dosimetry	15-16
11-7	Local Regional Control	19-20
11-8	2 year Disease Free Survival	21-22
11-9	2 year Survival	21-22

Dedication

To my parents, who saved no effort ,money or support to make my life more comfortable and productive, even on the expense of their own happiness.

To my wife, Maha, who started with me the new trip to the future, helped me with all possible means to pass through any hard times, and to my joy of life my daughters, Nadene and Lina whose smiles open all the doors of the future.

Acknowledgment

Before all thanks to ALLAH the most compassionate, the most merciful,

I would like to express my profound gratitude and great respect to Dr. Salwa Massoud Ibrahim, Prof. of Radiation Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University. I owe what words can't express for her meticulous supervision and sincere cooperation. It was an honor to me to carry out this work under her continuous guidance and expert supervision. I learned a lot both paractically and scientifically from her, such support is never to be forgotten.

I greatly indebted to Dr. AM Nisar Syed, Clinical Professor of Radiation Oncology, Memorial Medical Center, Long beach, California and University of California, Irvine, for his unlimited help precise instructions and kind encouragement during my stay in united state of America.

I wish to express my gratitude to Dr. Sami Ahmed EL-Badawi, Prof. of Radiation Oncology, National Cancer Institute, Cairo University, for his great help and guidance.

I wish to express my gratitude to Dr. Mohamed AL-Kahky Prof. of ENT, Faculty of Medicine, Ain Shams University, for his great help and guidance.

I would like to express my profound gratitude to Dr.Soheir Syed Ismail, Assist. Prof. of Radiation Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for her valuable instructions and close supervision.

Last but not Least, I would to thank all my professors and colleagues in Radiation Oncology Department in Faculty of Medicine, Ain Shams University and in Memorial Medical Center, Long beach, California for their warm advise and fruitful suggestions printed on each page of this work.

Introduction

he term "head and neck cancer" generally refers to those malignancies arise from the surface epithelium of the upper aerodigestive tract. Squamous cell carcinoma, or its variants, is the histologic type in 95% of these cases(SCHNC). At diagnosis, two third of the patients presents initially with local disease have locally advanced disease(T3,T4andN1-N3). Distant metastatic disease is found in less than 10% of the cases at diagnosis but up to 25%will die with distant metastasis and autopsy series show an incidence of 40%-50%. Treatment options for locoregionally advanced disease remain unsatisfactory. Surgery and/or radiation have long been considered standard therapies, yet the majority of these patients die of locoregional recurrence and a smaller fraction dies of distant metastases.

Surgery alone prvides a 5 year locoregional control rate of 25% and an overall survival rates of 17%-29%. Most of these patients also receive adjuvant postoperative radiotherapy especially those with stage IV disease, nodal involvement and those with positive surgical margins. Despite these aggressive and often deforming therapeutic interventions, the over all results in these patients are poor. more than 60% of cancers recur locoregionally, approximately 20% of patients develop distant metastsis and 70% die within 5 years. Even considering the 30% of patient alive at 5year, not all are free from the disease .Radiotherapy alone is commonly used for patient with inoperable and for unresectable stage III or IV disease . However it remains highly palliative. With radiation therapy alone , the local control rate achieved in these patients approaches 50% depending on tumor size, nodal involvement and the site of primary tumor, but the recurrence rate is high. The 5year locoregional control rate is ppproximately 15%, 5 year survival rate doesnot exceed 20% and the median survival time is 12 months. This is mainly due to the insufficient radiation dose that can be delivered to the tumor because of the tolerence of the surrounding normal tissues. Also, therapies of locally advanced head and neck cancers are often associated with considerable morbidity in the form of sever deformities, impaired speech and swallowing, osteoradionecrosis, mucositis, impaired nutrition, disturbed body image and a high suicide rate

Given these unsatisfactory results, investigation of new approaches for improving local regional control is justified. Several different radiation strategies have been used in attempts to improve the therapeutic ratio. These include accelerated fractionation(AFRT) and hyperfractionation(HFRT). Early in 1980s new combinations

,essentially displatin - 5 fluroracil(5FU) with very high primary tumor and lymph node response rates , led to a re-evaluation of the role of chemotherapy in the treatment of locally advanced head and neck cancer.

Aim of the work:

With introduction of chemotherapy early in the treatnent followed by limited external conventional photon irradiation then interstitial Iridiun-192 implant to facilitate the delivery of a high dose of radiation (up to 90 Gy) to the tumor and spare the surrounding normal tissues have been investigated with the goals of improved survival , improved local control , reduction of distant metastasis and organ preservation with subsequent retention of important functions such as speech and swallowing by avoiding extensive deforming surgery. These advantages offer patients the potential for better quality of life , even if the survival duration is not significantly altered by chemoradiotherapy compared with traditional therapies.