THE ROLE OF GEOPHYSICAL INTERPRETATION IN STUDYING THE STRUCTURAL TECTONIC STABILITY AT THE VICINITY OF HIGH DAM LAKE, EGYPT.

A Thesis

Submitted to The Faculty of Science Ain Shams University in Fulfillment of the Dgree of Doctor of Philosophy

(Ph.D)

IN GEOPHYSICS

BY

MOHAMED ABD EL-AAL ABD-ALA (M. Sc. Geophysics)

351.13

SUPERVISORS

63602

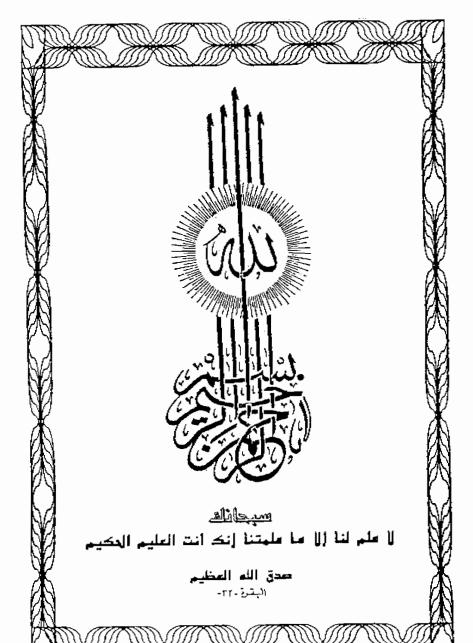
Prof. Dr.A.S.A. ABU EL-ATA Professor of Geophysics. Ain Shams University

Prof. Dr. A. Gh. Hassaneen
Professor. of Geophysics.
National Research Institute of
Astronomy and Geophysics.

Prof. Dr. H. A. Deebes. Director of National Research Institute of Astronomy & Geophysics.

> Prof. Dr. F. M. Ahmed Professor of Geophysics National Research Institute of Astronomy and Geophysics.

TO


GEOPHYSICS DEPARTMENT

FACULTY OF SCIENCE

AIN SHAMS UNIVERSITY

CAIRO

1995

ACKNOWLEDGMENT

In the first place, I praise my God and all gratitudes are due to Almighty God who aided and guided me to bring forth this thesis to light. Thank god.

I would like to express my great indebtedness and deep gratefulness to Prof. Dr. Ahmed S. A. Abu El-ata, professor of geophysics, geophysics department, faculty of science, Ain Shams University, who suggested this point of research and for his kind supervision, for doing his best in solving all the problems which I faced during the long run of the research work, the interpretation and guidance in the preparation of this thesis.

I also, acknowledge Prof. Dr. A. M. Sabri, Professor of geophysics, head of geophysics department, faculty of science, Ain Shams University for his help and encouragement.

I special thank and grateful to Prof. Dr. H. A. Deebes, president, of the national research institute of astronomy and geophysics for his encouragement and his kind helps.

I would like to express my thanks to Prof. Dr. A. Gh. Hassaneen, Professor of geoelectricity and head of geoelectricity and geothermic laboratory, national research instituted of astronomy and geophysics for his joint supervision, scientific discussions and comments.

The author is grateful to Prof. Dr. F. M. Ahmed ,head of geomagnetism laboratory national research institute of astronomy and geophysics for his encouragement and for all facilities that he offered during the work.

Also, my thanks and appreciation to Dr. S. Sh. Osman and Dr. M. A. Mesbah, for their assistances. Also, the author expresses his thanks and deep gratitude to Mr. M. N. soliman, Mr, M.A. Atia and Mr.A. M. Abass for help in this thesis.

I should also take the chance to express my admiration to Mr. Ahmed Moustafa Abd El Gawad Ain Shams, in offering me, his continual advice and help

I am greatly indebted to Mr. G. M. El-Kady and Mr. F. Shaaban for their assistance in this work. Also my thanks for all staff members of the geoelectricity and geothermic laboratory.

Finally from all my heart I feel indebted to my family for this great help and support to conduct this thesis.

LIST OF CONTENTS	PAGE NO.
List of Contents.	ii
List of Figures.	vi
List of tables	xv
ABSTRACT	xvi
ONA PETER I O ENTER IN CROLOGIC COTTO	
CHAPTER I G ENERAL GEOLOGIC SETTING	1
I-1- INTRODUCTION.	1
I-2-TOPOGRAPHY AND GEOMORPHOL	
I-3-SURFACE GEOLOGY	6
I-3-1-BASEMENT ROCKS	6
I-3-2- SEDIMENTARY COVER	9
I-4- STRUCTURE	19
I-4-1- FRACTURES AND FAULTS	20
I-4-2-FOLDS	25
I-4-3-UPLIFTING OF THE BASEMI	
ROCKS	26
I-5-GEOLOGIC HISTORY	27
I-6- AIM OF PRESENT STUDY	28
CHAPTER II: GRAVITY INTERPRETATION	31
II-1- INTRODUCTION	31
II-2- GRAVITY DATA	32
II-3- QUALITATIVE INTERPRETATION	OF
THE GRAVITY DATA.	35
II-3-1- GRAVITY SEPARATION.	35
II-3-1-A- REGIONAL ANOMALY N	MAP. 36
II-3-1-B- RESIDUAL ANOMALY N	1AP. 38
II-3-2- GRAVITY FILTERING.	40
II-3-2-A- RELATION BETWEEN	
SEPARATION AND FILTER	ING. 41
	'-

...

II-3-2-B- FILTERING THEORY.	42
II-3-2-C- FILLTERING APPLICATION.	50
II-4- QUANTITATIVE INTERPRETATION	
OF THE GRAVITY DATA.	61
II-4-1-SPECTRAL ANALYSIS METHOD	64
II-4-2- TWO DIMENSIONAL MODELING	76
II-5- TECTONIC STABILITY AS DEDUCED	
FROM GRAVITY INTERPRETATION.	85
CHAPTER III MAGNETIC ANALYSIS.	88
III-1- INTRODUCTION	88
III-2- TOTAL INTENSITY MAGNETIC DATA	89
III-3- REDUCTION TO THE MAGNETIC POLE	91
III-3-1- CONCEPT OF THE REDUCTION	
TO THE POLE.	91
III-3-2- THEORY OF THE REDUCTION	
TO THE POLE	92
III-3-3- ADVANTAGES OF THE	
REDUCTION TO THE POLE	
TRANSFORMATIONS.	98
III-3-4- APPLICATION OF THE	
REDUCTION TO THE POLE.	100
III-4- QUALITATIVE INTERPRETATION	100
III-4-1- MAGNETIC SEPARATION	102
III-4-1-A-REGIONAL ANOMALY MAP.	103
III-4-1-B- RESIDUAL ANOMALY MAP.	105
III-4-2- MAGNETIC FILTERINF	105
III-4-2-A- LOW-CUT FILTERING	107
III-4-2-B- HIGH-CUT FILTERING	112
III-4-2-C-BAND PASS MAGNETIC	
FILTERING	115
III-5- QUANTITATIVE INTERPRETATION.	118
III-5-1- SPECTRAL ANALYSIS METHOD.	121

III-5-2- TWO-DIMENSIONAL MAGNETIC	
MODELING.	128
III-6- TECTONIC STABILITY, BASED ON	
MAGNETIC INTERPRETATION.	134
•	
CHAPTER IV: ELECTRICAL ANALYSIS	136
IV-1- INTRODUCTION	136
IV-2- ELECTRICAL RESISTIVITY OF ROCKS	137
IV-3- PRINCIPLES OF RESISTIVITY	
SURVEYING	140
IV-4- PROCEDURE ELECTRODE	143
CONFIGURATION AND FILED TECHIQUE	
IV-4-1- WENNER ARRANGEMENT	143
IV-4-2- SCHLUMBERGER	144
ARRANGEMENT	
IV-4-3- DIPOLE ARRANGEMENT	144
IV-5- ELECTRICAL SOUNDING AND	144
HORIZONTAL PROFILING	
IV-6- EARTH RESISTIVITY INSTRUMENTS	146
IV-7- FILED PROCEDURE	150
IV-8- INTERPRETATION	152
IV-8-1- QUALITATIVE INTERPRETATION	152
IV-8-1-A- ISO-APPARENT ELECTRIC	
RESISTIVITY CONTOUR MAPS	153
IV-8-1-B- PSEUDO-APPARENT	
RESISTIVITY SECTIONS	162
IV-8-2- QUANTITATIVE INTERPRETATION	
OF FIELD DATA	177
IV-8-2-A- INTERPRETATION OF VERTICAL	
ELECTRICAL SOUNDING CURVES	. 178

IV-8-2-B- RESULTS OF THE	
INTERPRETATION OF THE VERTICAL	
SOUNDING CURVES.	179
IV-8-2-C- GEOELECTRICAL CROSS-	
SECTIONS	180
IV-8-2-3- INTERPRETATION OF ISOPACH	
MAPS	227
IV-8-2-4- TRUE RESISTIVITY CONTOUR	
MAPS	227
CHAPTER V: SUBSURFACE TEMPERATURE	
MEASUREMENTS AND TERRESTRIAL HEAT	
FLOW ESTEMATES	233
V-1- INTRODUCTION	233
V-2- SENSORS FOR TEMPERATURE	
MEASUREMENTS.	236
V-3- MEASUREMENTS OF SUBSURFACE	
TEMPERATURES IN BOREHOLES	236
V-4- TEMPERATURE PROFILES AND THEIR	
INTERPRETATION	239
CHAPTER VI: HYDROGEOLOGICAL EVALUATION	249
VI-1- INTRODUTION	249
VI-2- REGIONAL HYDROGEOLOGIC SETTING	250
VI-3- HYDROGEOLOGICAL SETTING OF THE	
KALABSHA AREA	255
VI-4-WATER-LEVEL DATA	256
VI-5- MODEL OF THE GEBEL MARAWA AREA	260
VI-6-HYDROGEOLOGIC ASSESSMENT OF	
THE STUDY AREA.	260

SUMMARY AND CONCLUSIONS	263
REFERNCES	268
ARARIC SUMMARY	

LIST OF FIGURES	PAGE NO
FIG (1) LOCATION MAP OF THE STUDY AREA	3
FIG (2) THE UPLIFTED SYSTEMS IN SOUTHERN EGYP	Γ
(AFTER, SAID ET AL, 1990)	7
FIG (3) SURFACE GEOLOGIC MAP OF THE STUDY ARE	A 8
FIG (4) CROSS SECTION SHOWING THE RELATION	
BETWEEN THE NUBIA FORMATION AND THE	
NDERLYING BASEMENT ROCKS.	11
FIG (5) HYDROGEOLOGIC CROSS SECTION A-A'	21
FIG (6) HYDROGEOLOGIC CROSS SECTION B-B'	22
FIG (7) HYDROGEOLOGIC CROSS SECTION C-C	23
FIG (8) STRUCTURAL LINEATION MAP OF THE AREA	
UNDER STUDY (AFTER, EL-SHAZLY ET AL 1977	7) 24
FIG (9) BOUGUER GRAVITY ANOMALY MAP	33
FIG (10) REGIONAL GRAVITY ANOMALY MAP	
(USING GRIFFIN'S METHOD, 1949)	37
FIG (11) RESIDUAL GRAVITY ANOMALY MAP	
USING GRIFFIN'S METHOD, 1949)	39
FIG (12) GRAVITY MAP FILTERD WITH AN 8-UNITS	
REGIONAL FILTER	51
FIG (13) GRAVITY MAP FILTERED WITH A 16-UNITS	
REGIONAL FILTER	52
FIG (14) GRAVITY MAP FILTERED WITH A 21.3-UNITS	
REGIONAL FILTER	54
FIG (15) GRAVITY MAP FILTERED WITH AN 8-UNITS	• .
RESIDUAL FILTER	56
FIG (16) GRAVITY MAP FILTERED WITH A 16-UNITS	
RESIDUAL FILTER	57
FIG (17) GRAVITY MAP FILTERED WITH A 21.3-UNITS	ı
RESIDUAL FILTER	58

FIG (18) GRAVITY MAP WITH A 16-8 UNITS BAND	
PASS FILTER	60
FIG (19) GRAVITY MAP WITH A 21.3-16 UNITS BAND	
PASS FILTER	62
FIG (20) GRAVITY MAP WITH A 21.3-8 UNITS BAND	
PASS FILTER	63
FIG(21) LOCATION MAP OF GRAVITY SPECTRAL	
ANALYSIS	67
FIG (22) GRAVITY SPECTRAL ANALYSIS ALONG	
PROFILE P2-P2'	69
FIG (23) GRAVITY SPECTRAL ANALYSIS ALONG	
PROFILE P5-P5'	70
FIG (24) GRAVITY SPECTRAL ANALYSIS ALONG	
PROFILE P9-P9'	71
FIG (25) GRAVITY SPECTRAL ANALYSIS ALONG	
PROFILE P10-P10'	72
FIG (26) NEAR- SURFACE INTRUSION RELIEF MAP,	
BASED ON GRAVITY SPECTRAL ANALYSIS	73
FIG (27) TENTATIVE BASEMENT RELIEF MAP, BASED	
ON GRAVITY SPECTRAL ANALYSIS	74
FIG (28) LOCATIONS OF THE TWO-DIMENSIONAL	
GRAVITY PROFILES	77
FIG (29) TWO DIMENSIONAL GRAVITY MODEL FOR	
PROFILE PI- PI'	78
FIG (30) TWO DIMENSIONAL GRAVITY MODEL FOR	
PROFILE P2- P2'	78
FIG (31) TWO DIMENSIONAL GRAVITY MODEL FOR	
PROFILE P3- P3'	79
FIG (32) TWO DIMENSIONAL GRAVITY MODEL FOR	
PROFILE P4- P4'	79

FIG (33) TWO DIMENSIONAL GRAVITY MODEL FOR	
PROFILE P5- P5'	80
FIG (34) TWO DIMENSIONAL GRAVITY MODEL FOR	
PROFILE P6- P	80
6FIG (35) TWO DIMENSIONAL GRAVITY MODEL FOR	
PROFILE P7- P7'	81
FIG (36) TWO DIMENSIONAL GRAVITY MODEL FOR	
PROFILE P8- P8'	81
FIG (37) TWO DIMENSIONAL GRAVITY MODEL FOR	
PROFILE P9- P9'	82
FIG (38) TWO DIMENSIONAL GRAVITY MODEL FOR	
PROFILE P10- P10'	82
FIG (39) TWO DIMENSIONAL GRAVITY MODEL FOR	
PROFILE P11- P11'	83
FIG (40) TWO DIMENSIONAL GRAVITY MODEL FOR	
PROFILE P12- P12'	83
FIG (41) TWO DIMENSIONAL GRAVITY MODEL FOR	
PROFILE P13- P13'	84
FIG (42) A MAP SHOWING THE BASEMENT RELIEF, AS	
BASED ON GRAVITY TWO-IMENSIONAL	
MODELING	86
FIG (43) TOTAL INTENSITY MAGNETIC MAP OF THE	
STUDY AREA	90
FIG (44) SCHEMATIC DIGRAM FOR THE R. T. P	
COEFFICIENT	99
FIG (45) TOTAL INTENSITY MAGNETIC MAP OF THE	
STUDY AREA REDUCED TO THEMAGNETIC POLE	101
FIG (46) REGIONAL ANOMALY OF THE TOTAL	
INTENSITY MAGNETIC MAP REDUCED TO THE	
MAGNETIC POLE	104

FIG (47) RESIDUAL ANOMALY OF THE TOTAL	
INTENSITY MAGNETIC MAP REDUCED TO THE	
MAGNETIC POLE	106
FIG (48) R. T. P MAP FILTERED WITH AN 8-UNITS	
REGIONAL FILTER	108
FIG (49) R. T. P MAP FILTERED WITH A 16-UNITS	
REGIONAL FILTER	110
FIG (50) R. T. P MAP FILTERED WITH A 21.3-UNITS	
REGIONAL FILTER	111
FIG (51) R. T. P MAP FILTERED WITH A 8-UNITS	
RESIDUAL FILTER	113
FIG (52) R. T. P MAP FILTERED WITH A 16-UNITS	
RESIDUAL FILTER	114
FIG (53) R. T. P MAP FILTERED WITH A 21.3-UNITS	
RESIDUAL FILTER	116
FIG (54) R. T. P MAP FILTERED WITH A 16-8 UNITS	
BAND BASS FILTER	117
FIG (55) R. T. P MAP FILTERED WITH A 21.3-16 UNITS	
BAND PASS FILTER.	119
FIG (56) R. T. P MAP FILTERED WITH A 21.3-8 UNITS	
BAND PASS FILTER.	120
FIG (57) LOCATION MAP OF THE MODELED AND	
SPECTRAL ANALYSIS PROFILES.	122
FIG (58) MAGNETIC SPECTRAL ANALYSIS ALONG	
PROFILE P2-2'	123
FIG (59) MAGNETIC SPECTRAL ANALYSIS ALONG	
PROFILE P4-4'	124
FIG (60) MAGNETIC SPECTRAL ANALYSIS ALONG	
PROFILE P7-7'	125
FIG (61) NEAR- SURFACE INTRUSION RELIEF MAP,	
RACED ON CRAVITY CRECTRAL ANALYSIS	126

FIG (62) BASEMENT RELIEF MAP, BASED ON	
SPECTRAL ANALYSIS.	129
FIG (63) TWO-DIMENSIONAL MAGNETIC MODEL	
FOR PROFILE P1-P1'	131
FIG (64) TWO-DIMENSIONA; MAGNETIC MODEL	
FOR PROFILE P3-P3'	131
FIG (65) TWO-DIMENSIONAL MAGNETIC MODEL	
FOR PROFILE P6-P6'	132
FIG (66) TWO-DIMENSIONAL MAGNETIC MODEL	
FOR ROFILE P9-P9'	132
FIG (67) MOHO DISCONTINUITY CONFIGURATION, BASED	
ON TWO MENSIONAL MODELING	133
FIG (68) ARRANGMENT OF CURRENT ELECTRODS	
AND POTENTIAL ELECTRODES	141
FIG (69) ELECTRODES CONFIGURATIONS	145
FIG (70) A PHOTOGRAPHIC SHOWES THE GGA 31	
INSTRUMENT	148
FIG (71) VERTICAL ELECTRIC SOUNDING LOCATION	
MAP	151
FIG (72) ISO-APPARENT RESISTIVITY CONTOUR	
MAP AT AB/2 = 1 M	155
FIG (73) ISO-APPARENT RESISTIVITY CONTOUR	
MAP AT AB/2 = 8 M	156
FIG (74) ISO-APPARENT RESISTIVITY CONTOUR	
MAP AT AB/2 = 20 M	157
FIG (75) ISO-APPARENT RESISTIVITY CONTOUR	
MAP AT AB/2 = 80 M	159
FIG (76) ISO-APPARENT RESISTIVITY CONTOUR	
MAP AT AB/2 = 200 M	160
FIG (77) ISO-APPARENT RESISTIVITY CONTOUR	
$MAP AT AR/2 \approx 300 M$	161

FIG (78) LOCATION MAP OF VES PROFILES	164
FIG (79) PSEUDO-GEOELECTRIC SECTION A-A'	165
FIG (80) PSEUDO-GEOELECTRIC SECTION B-B'	166
FIG (81) PSEUDO-GEOELECTRIC SECTION C-C'	167
FIG (82) PSEUDO-GEOELECTRIC SECTION D-D'	169
FIG (83) PSEUDO-GEOELECTRIC SECTION E-E'	170
FIG (84) PSEUDO-GEOELECTRIC SECTION F-F	171
FIG (85) PSEUDO-GEOELECTRIC SECTION G-G	172
FIG (86) PSEUDO-GEOELECTRIC SECTION H-H	174
FIG (87) PSEUDO-GEOELECTRIC SECTION I-I'	175
FIG (88) PSEUDO-GEOELECTRIC SECTION J-F	176
FIG (89) INTERPRETATION OF VES STATION NO. 2	181
FIG (90) INTERPRETATION OF VES STATION NO. 6	181
FIG (91) INTERPRETATION OF VES STATION NO. 8	182
FIG (92) INTERPRETATION OF VES STATION NO. 9	182
FIG (93) INTERPRETATION OF VES STATION NO. 15	183
FIG (94) INTERPRETATION OF VES STATION NO.17	183
FIG (95) INTERPRETATION OF VES STATION NO. 19	184
FIG (96) INTERPRETATION OF VES STATION NO. 20	184
FIG (97) INTERPRETATION OF VES STATION NO. 22	185
FIG (98) INTERPRETATION OF VES STATION NO. 25	185
FIG (99) INTERPRETATION OF VES STATION NO. 30	186
FIG (100) INTERPRETATION OF VES STATION NO. 33	186
FIG (101) INTERPRETATION OF VES STATION NO. 38	187
FIG (102) INTERPRETATION OF VES STATION NO. 41	187
FIG (103) INTERPRETATION OF VES STATION NO. 45	188
FIG (104) INTERPRETATION OF VES STATION NO. 48	188
FIG (105) INTERPRETATION OF VES STATION NO. 52	189
FIG (106) INTERPRETATION OF VES STATION NO. 56	189
FIG (107) INTERPRETATION OF VES STATION NO. 57	190
FIG (108) INTERPRETATION OF VES STATION NO. 59	190