DEVELOPMENT A COMBINED MACHINE FOR PRIMARY AND SECONDARY TILLAGE UNDER LOCAL CONDITIONS

$\mathbf{B}\mathbf{y}$

Zakaria Mohamed Ismail Imara

B. Sc. in Ag. Mech., El-Mansoura Univ. 1976.M.Sc. in Ag. Mech., Tanta Univ., 1990.

Thesis

Submitted in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy

131.3 2. M.

In

AGRICULTURAL MECHANIZATION

Agricultural Mechanization Department
Faculty of Agriculture,
Kafr El-Sheikh
Tanta University

1996

DES.

APPROVAL SHEET

DEVELOPMENT A COMBINED MACHINE FOR PRIMARY AND SECONDARY TILLAGE UNDER LOCAL CONDITION

By

Zakaria Mohamed Ismail Imara

Thesis for Ph. D. Degree in

AGRICULTURAL MECHANIZATION

has been approved by:

Prof. Dr. Metwalli M. Mohamed

Professor of Ag. Eng. and Head of Ag. Mechanization Dept., Faculty of Agric., Kafr El-Sheikh, Tanta University

Prof. Dr. Samir A. Tayel

Professor of Ag. Eng. and Head of Ag. Eng. Dept., Faculty of Agric., El-Azhar University

Prof. Dr. Mamdouh A. Helmy

Professor of Ag. Eng., Ag. Mechanization Dept., Faculty of Agric., Kafr El-Sheikh, Tanta University

M. Metwalli

S. A. Tayel

Manduli A. Helmy

SUPERVISION COMMITTEE

Prof. Dr. Mamdouh A. Helmy

Professor of Ag. Eng., Ag.Mech. Dept., Faculty of Agric., Kafr El-Sheikh, Tanta University

Hamdul A. Helmy

Dr. Fathey I. Hindey

Assitant professor in Ag. Eng., Ag. Mech. Dept., Faculty of Agric., Kafr El-Sheikh, Tanta University

Kafr El-Sheikh, Tanta University

Jathey I. Hindey

ACKNOWLEDGMENT

Thanks to Allah for his gracious kindness in endeavours the author has taken up in his life.

The author wishes to express his deep sincere thanks and appreciation to *Prof. Dr.* **Metwalli Metwalli Mohamed**, Professor and head of Agricultural Mechanization Department, Fac. of Agric., Kafr El-Sheikh. Tanta Univ. for his advice and encouragement.

The author also wishes to express his deep sincere thanks and gratitude to *Prof. Dr.* **Mandouh Abbas Helmy**, Professor of Agricultural Mechanization Department, Fac. of Agric., Kafr El-Sheikh. Tanta Univ. for his supervision, continuous Scientific help, guidance, encouragement and revising manuscript.

The author also would like to express his sincere thanks and gratitude to *Dr.* **Fathey Ibrahim Hindey** Assistant Prof. in Agric. Mechanization Department, Fac. of Agric., Kafr El-Sheikh. Tanta Univ. for his supervision, Scientific help and revising manuscript.

Many thanks are extended to *Prof. Dr.* Abd El-Ghany M. El-Gendy Director of Agric. Mech. Res. Inst. and *Dr.* Osma M. Kamel Director of Rice Mechanization Center (Meet El-Deepa) for their assistance in providing the equipment and facilities for the present research work.

Sincere thanks also due to Mr. Said El-Sayed Abo-Zaher Associate Lecturer in Agricultural Mechanization Fac. of Agric., Kafr El-Sheikh Tanta Univ. For his continuous Scientific help and encouragement.

I would like to express my sincere and deep thanks to all the staff members of Agric. Mech. Fac. of Agric., Kafr El-Sheikh. Tanta Univ. for continuous encouragement and help.

Very deep thanks to my brothers, my wife and to my sons for their continuous encouragement and their patience during my studying for Ph. D. degree.

I would like to express my deep thanks and appreciations to all who assisted me in any way during carrying out the research.

DEDICATION

To my parents soul to my wife and my sons (Tamer, Ramy, Yasmeen)

(Zakaria M. Imara)

CONTENTS

The state of the s

	Page
1- INTRODUCTION.	1
2- REVIEW OF LITERATURE.	5
2.1. Tillage operation and some properties of soil.	5
2.1.1. Soil penetration resistance.	5
2.1.2. Soil moisture content.	
2.1.3. Soil porosity.	
2.1.4. Bulk density.	13
2.1.5. Infiltration rate.	15
2.1.6. Soil volume disturbed.	
2.2. Plowing quality.	
2.2.1. Degree of soil plowing.	
2.2.2. Degree of soil pulverization.	
2.2.3. Degree of soil inversion.	
2.2.4. Degree of soil mixing.	25 26
2.2.5. Disturbance degree. 2.3. Effect of share and mouldboard	
2.3.1. Share	
2.3.2. Mouldboards	
2.4. Utilization of combined units in soil tillage operations.	32
2.4.1. Combination of primary tillage equipment.	
2.4.2. Combination of second tillage equipment.	34
2.4.3. Combination of primary and secondary equipment.	35
2.4.4. Utilization of combined units to improve field capacity.	
2.5. Relation between crop yield and soil tillage operation.	
2.5.1. Effect of soil compaction.	
2.5.2. Effect of plowing depth.	
2.5.3. Effect of share type. 2.5.4. Effect of root distribution of planted crop.	
2.6. Draft and power requirements for soil tillage operation.	
2.6.1. Draft requirement.	43
2.6.2. Power requirement.	
2.7. Local manufacture of combine seedbed prepar	ration
implements.	
2.8. Cost analysis and economic evaluation.	
3- THORETICAL CONSIDERATIONS	
3.1. Modified mouldboard plow desgin parameters	58
3.1.1. Forces acting on the bottom	58

	page
3.1.2. Determination of some basic parameters	63
3.1.2.1. The plow operating width	· 63
3.1.2.2. Designing of share	65
3.1.2.3. Designing of surfaces of plow bottoms	69
3.1.2.4. Deigning a cylindrical mouldboard	72
3.1.3. The interaction of the bottom with the soil	77
3.2. Rotary plow design parameters	82
3.2.1. Soil tool geometry	03
3.2.2. Cutting resistance	0/
4. MATERIALS AND METHODS	88
4.1. Materials	
4.1.1 Modified mouldboard plow.	
4.1.2. Rotary plow.	
4.1.3. Manufactured combined tillage unit	
4.1.4. Planter unit.	
4.1.5. Measuring instruments.	
4.1.5.a. Spring dynamometer.	
4.1.5.b. Penetrometer.	
4.1.5.c. Stop watch.	
4.1.5.d. Electrical balance.	
4.1.5.e. Electrical oven. 4.1.5.f. Tape, arrows and pins.	
4.1.5.g. The profile-meter.	
4.1.5.b. The net-work of wooden blocks.	
4.1.5.l. The frame meter.	
4.1.5.j. Fuel consumption apparatus.	
4.2. Methods	
4.2.1. Laboratory experiments.	40-
4.2.1.1. Soil physical properties.	
4.2.1.1.a. Soil structure.	
4.2.1.1.b. Soil moisture content	105
4.2.1.1.c. Soil bulk density and total porosity.	
4.2.2. Field experiments.	106
4.2.2.1. Measurements carried out during field experiments.	107
4.2.2.1.1. Soil physical properties.	107
4.2.2.1.1.a. Infiltration rate.	107
4.2.2.1.1.b. Soil penetration resistance.	
4.2.2.2. Plowing quality.	
4.2.2.2.a. Degree of soil plowing.	108

	pag
4.2.2.2.b. Degree of soil pulverization.	10
4.2.2.2.c. Degree of soil inversion.	10
4.2.2.2.d. Degree of soil mixing.	11
4.2.2.2.e. Disturbance degree.	11
4.2.2.2.f, K-ratio.	11
4.2.2.3. Field performance characteristics	
4.2.2.3.a, Fuel consumption.	
4.2.2.3.b. Field efficiency.	
4.2.2.3.c. Drawbar pull.	
4.2.2.3.d. Power requirement.	4.4
4.2.2.3.d.1. Drawbar power.	
4.2.2.3.d.2. Engine brake power.	
4.2.2.3.e. Draft per unit of soil area. 4.3.3.4. Determination of soil volume distribed.	
4.2.2.5. Cost analysis.	4 4
4.2.2.6. Plant root system distribution.	
4.2.2.6.1. Root distribution of area.	
4,2,2,6,2. Root dry mass.	
4.2.2.7. Statistical analysis.	
forward speed and plowing machine type on the	
properties.	
5.1.1. Bulk density.	
5.1.2. Total porosity.	
5.1.3. Soil penetration resistance.	1
5.1.4. Infiltration rate and cumulative infiltration rate.	1
5.1.4.a. Infiltration rate.	
5.1.4,b. Cumulative infiltration rate.	
5.1.5. Rate of disturbed soil volume.	
5.2. Effect of plowing depth, soil moisture contents, imple	ement
forward speed and plowing machine type on the pl	
quality.	
5.2.1. Degree of soil plowing.	
5.2.2. Degree of soil pulverization.	
5.2.3. Degree of soil inversion.	-
5.2.4. Degree of soil mixing.	
5.2.5. Disturbance degree.	

-[٧-	m ar = -
	page
5.2.6, K-ratio.	173
5.3. Effect of plowing depth, soil moisture contents, implement	
forward speed and plowing machine type on grain yield	
of corn crop.	175
5.3.1. Root dry mass.	175
5 3 2 Root distribution area.	178
5.3.3. Corn yield mass per unit area.	181
5.4. Effect of plowing depth, soil moisture contents, implement	
forward speed and plowing machine type on field	
performance characteristics.	184
5.4.1. Effective field capacity.	184
5.4.2. Field efficiency	184
5.4.3. Drawbar pull.	188
5.4.4. Unit draft.	191
5.4.5. Power requirements.	194
5.4.5.1. Drawbar power.	197
5.4.5.2. Engine brake power.	197
5.4.5.3. Energy required per agicultural area unit.	200
5.4.5.4. Energy required per volume unit of disturbed soil	
5.4.5.5. Energy required per mass unit of crop.	
5.4.6. Fuel consumption.	
5.4.7. Cost analysis and Net benefit	
5.4.7.1. Cost analysis	
5.4.7.2. Net benefit.	221
6. SUMMARY AND CONCLUSION.	228
0. SCHIMART AND CONCEOSION.	
7. REFERENCE	243
8. APPENDIX.	256
9. ARABIC SUMMARY	

LIST OF FIGURES

		Page
Fig. 2-1.	Movement of soil during plowing, as determined by plowing small	
-	blocks in the unplowed furrow slice and noting their final	
	positions in the turned soil (M.L. Nichols and I.F. Reed)	24
Fig. 2-2	Plow shares	27
Fig. 2-3.	Types of tools of rotary plows	29
Fig. 2-4.	Profilograms of basic mouldboard types	30
Fig. 3-1.	Schematic diagram of the forces on the bottom	58
Fig. 3-2.	Foreces acting on a bottom	60
Fig. 3-3.	Schematic diagram of the arrangement of bottoms in the	
· ·	transverse direction.	, 64
Fig. 3-4.	Share as a spatial wedge	65
Fig. 3-5.	Distribution of forces and speeds on the edge of the share.	67
Fig. 3-6.	Determination of frontal plan of a mouldboard	71
Fig. 3-7.	Design of a cylindrical mouldboard	73
Fig. 3-8.	Ploting of parabolas by the tangential method.	75
Fig. 3-9.	A schematic diagram showing the theoretical process of soil slice	,,,
	reversion	78
Fig. 3-10.	The course of theoretical invesion of the furrow slice by the	, 0
3	mouldboard bottom	80
Fig. 3-11,	Limit angle ϑ_{ϵ} of the furrow-slice turning on a slope when	00
Ü	throwing slices	82
Fig. 3-12.	Shapes of soil slices for forward and reverse rotation as a function	02
- 0	of the ratio of peripheral speed to forward speed.	83
Fig. 3-13.	Angles and speed of cutting with forward and reserve rotation	84
Fig. 3-14.	Dimensions of the soil slice.	85
Fig. 3-15.	Theoretical reaction force compnents acting n a rtary tiller blade.	83 87
Fig. 4-1.	Modified mouldboard plow.	. 89
Fig. 4-2.	Dimensions of plow bottom	
Fig. 4-3.	Elevatin, plan and side view of the modified mouldboard plow	89
Fig. 4-4.	Rotary plow.	16
Fig. 4-5.	Dimensions of L-shaped knives.	92
Fig. 4-6.	Elevatin, plan and side view of rotary plow.	02
Fig. 4-8.	Elevatin, plan and side view of manufactured combine unit.	94
Fig. 4-9.	Planter unit	96 98
Fig. 4-10.	Planter unit. Spring dynamometer.	
Fig. 4-11.	Sprig compression force plotted against displacement.	99
Fig. 4-12.	Soil penetrometer component (SR-2DIK5500).	99
Fig. 4-13.	Soil profile meter.	101
Fig. 4-14.	Three dimensionals frame-meter.	103
Fig. 4-15.		104
Fig. 4-16.	The fuel consumption apparatus.	104
Fig. 4-10.	Apparatus parts for measuring roots distribution	117
Fig. 4-17.	Root distribution of maize crop in soil.	119
rig. 3-1.	Effect of implement forward speed on bulk density (ρ_d) at two	
	different plowing depths, soil moisture content and plowing	
	machine types.	121

		Page
Fig.5-2.	Effect of implement forward speed on total porosity (T _p)at two different plowing depths, soil moisture content and plowing machine types.	124
Fig. 5-3.	Effect of implement forward speeds on soil penetration resistance (S _{pr}) at two different plowing depths, soil moisture content of 17.31% and plowing machine types.	127
Fig. 5-4.	Effect of implement forward speeds on soil penetration resistance (S _{pr}) at two different plowing depths, soil moisture content of 20.24% and plowing machine types.	128
Fig. 5-5.	Effect of implement forward speeds on soil penetration resistance (S_{pr}) at two different depths, soil moisture content of 25.19% and	129
Fig. 5-6.	plowing machine types. Effect of plowing machine type on infiltration rate (I _r) and cumulative infiltration rate (C _{ir}) at plowing depths, soil moisture content of 17.31% and mean of implement forward speed of 3.873 km/h.	132
Fig. 5-7.	Effect of plowing machine type on infiltration rate (I _r) and cumulative infiltration rate (C _{ir}) at plowing depths, soil moisture content of 20.24% and mean of implement forward speed of 3.873 km/h.	133
Fig. 5-8.	Effect of plowing machine type on infiltration rate (I _r) and cumulative infiltration rate (C _{ir}) at plowing depths, soil moisture content of 25.19% and mean of implement forward speed of 3.873 km/h.	134
Fig. 5-9	Effect of implement forward speed on the rate of disturbed soil volume (R _{dsv}) at two different plowing depths, soil moisture content and plowing machine types.	137
Fig. 5-10.	Effect of implement forward speed on degree of soil plowing (P _d) at two different plowing depths, soil moisture contents and plowing machine types.	141
Fig. 5-11.	Effect of implement forward speed on degree of soil pulverization (P _s) at two different plowing depths, soil moisture contents and plowing machine types.	145
Fig. 5-12.	Effect of implement forward speed on degree of soil inversion (I ₄) at two different plowing depths and soil moisture contents	148
Fig. 5-13.	Position of marked blocks before and after tillage operation by using the modified mouldboard plow at implement forward speed (Sp) of 2.57 km/h and soil moisture content (Mc) of 17.31%	150
Fig. 5-14.	Position of marked blocks before and after tillage operation by using the modified mouldboard plow at implement forward speed	
Fig. 5-15.	(Sp) of 3.21 km/h and soil moisture content (Mc) of 17.31%	
	(Sp) of 4.46 km/h and soil moisture content (Mc) of 17.31%	152

			Page
Fig.	5-16.	Position of marked blocks before and after tillage operation by using the modified mouldboard plow at implement forward speed	152
Fig.	5-17.	(Sp) of 5.25 km/h and soil moisture content (Mc) of 17.31% Position of marked blocks before and after tillage operation by using the modified mouldboard plow at implement forward speed	153
Fig.	5-18.	(Sp) of 2.57 km/h and soil moisture content (Mc) of 20.24% Position of marked blocks before and after tillage operation by using the modified mouldboard plow at implement forward speed	154
Fig.	5-19.	(Sp) of 3.21 km/h and soil moisture content (Mc) of 20.24% Position of marked blocks before and after tillage operation by	155
Fig.	5-20.	using the modified mouldboard plow at implement forward speed (Sp) of 4.46 km/h and soil moisture content (Mc) of 20.24% Position of marked blocks before and after tillage operation by	156
Fig.	5.21.	using the modified mouldboard plow at implement forward speed (Sp) of 5.25 km/h and soil moisture content (Mc) of 20.24% Position of marked blocks before and after tillage operation by	157
		using the modified mouldboard plow at implement forward speed (Sp) of 2.57 km/h and soil moisture content (Mc) of 25.19%	158
rıg.	5-22.	Position of marked blocks before and after tillage operation by using the modified mouldboard plow at implement forward speed (Sp) of 3.21 km/h and soil moisture content (Mc) of 25.19%	159
Fig.	5-23.	Position of marked blocks before and after tillage operation by using the modified mouldboard plow at implement forward speed (Sp) of 4.46 km/h and soil moisture content (Mc) of 25.19%	160
Fig.	5-24.	Position of marked blocks before and after tillage operation by using the modified mouldboard plow at implement forward speed	100
Fig.	5-25	(Sp) of 5.25 km/h and soil moisture content (Mc) of 25.19% Effect of implement forward speed on degree of soil mixing (M _d)	161
Fig.	5-26.	at two different plowing depths and soil moisture contents	164 169
Fig.	5-27.	Effect of implement forward speed on disturbance degree of soil layer (D _{dl}) at two different plowing depths and soil moisture	
Fig.	. 5-28.	Effect of implement forward speed on K-ratio at two different plowing depths and soil moisture contents.	170 174
Fig.	. 5-29.	Effect of implement forward speed on root dry mass (R _{dm}) at two different plowing depths, soil moisture content and plowing	. 1 -1
Fig	. 5-30.	machine types. Effect of implement forward speed on root distribution area in soil (R _{da}) at two different plowing depths, soil moisture content and	176
		plowing machine types.	179

	4.4	Page
Fig. 5-31.	Effect of implement forward speed on corn yield mass per unit area (C _{ym}) at two different plowing depths, soil moisture content and plowing machine types.	183
Fig. 5-32.	Effect of implement forward speed on effective field capacity $(E_{\rm fe})$ at two different plowing depths, soil moisture content and	186
Fig. 5-33.	plowing machine types. Effect of implement forward speed on field efficiency (η _t) at two different plowing depths, soil moisture content and plowing	189
Fig. 5-34.	Effect of implement forward speed on drawbar pull (D _p) at two different plowing depths, soil moisture content and plowing	192
Fig. 5-35.	Effect of implement forward speed on unit draft (U _d) at two different plowing depths, soil moisture content and plowing	
Fig. 5-36.	machine types. Effect of implement forward speed on drawbar power (D _{bp}) at two different plowing depths, soil moisture content and plowing	195
Fig. 5-37.	machine types. Effect of implement forward speed on engine brake power (E_{bp}) at two different plowing depths, soil moisture content and plowing	199
Fig. 5-38.	machine types. Effect of implement forward speed on energy required per unit of area (E _{ra}) at two different plowing depths, soil moisture content	202
Fig. 5-39.	and plowing machine types. Effect of implement forward speed on energy required per volume unit of disturbed soil (E _r) at two different plowing depths, soil	205
Fig. 5-40.	moisture content and plowing machine types. Effect of implement forward speed on power required per mass unit of crop (P_{mn}) at two different plowing depths, soil moisture	208
Fig. 5-41.	content and plowing machine types. Effect of implement forward speed on fuel consumption per hours (F _{ch}) at two different plowing depths, soil moisture content and	211
Fig. 5-42.	plowing machine types. Effect of implement forward speed on fuel consumption per feddan (F _{et}) at two different plowing depths, soil moisture content	213
Fig. 5-43.	and plowing machine types. Effect of implement forward speed on total costs per hours (T _{ch}) at two different plowing depths, soil moisture content and	214
Fig. 5-44.	plowing machine types. Effect of implement forward speed on total costs per feddan (T _{ef}) at two different plowing depths, soil moisture content and	218
Fig. 5-45.	plowing machine types. Effect of implement forward speed on net benefit (N _b) at two different plowing depths, soil moisture content and plowing	219
	machine types.	. 223