Plasma Endothelin-1 in Pulmonary Hypertension

Thesis Submitted for Partial Fulfillment of MD of Clinical Pathology

> Вν Perihan Hamdi Tawffik

Supervised by Prof Dr Mahmoud Sabry Sallam

Professor of Clinical Pathology Faculty of Medicine Ain Shams University

Dr. Nadia Aly Abd El Sattar Assisstant Professor of Clinical Pathology Faculty of Medicine

Ain Shams University

Dr. Dalia Helmy Farag Lecturer of Clinical Pathology Faculty of Medicine Ain Shams University

Dr. Mervat Abou El Maaty Nabih

Lecturer of Cardiology Faculty of Medicine Ain Shams University

Faculty of Medicine

Ain Shams University 1995

632 32

Acknowledgement

I would like to express my deepest gratitude to Professor Dr. Mahmoud Labry Sallam, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams Iniversity, for his valuable support, guidance and encouragement, and for giving me the opportunity to work under his supervision.

I also offer my sincere thanks to Dr. Nadia Aly Abd El Sattar, Assistant Professor of Clinical Pathology, Ain Shams University, from whom I've learned a lot, for her generous co-operation, sincere guidance and for her belp in the delivery of this work.

I am also very grateful to Dr. Dalia Helmy Farag, Lecturer of Clinical Pathology, Ain Shams University, for her continuous supervision, stimulating suggestions, constant advice throughout this work.

I would like to thank Dr **Mervat Abou El Maaty Nabih**, Lecturer of Cardiology, Ain Shams University, for her generous help, and valuable remarks that lead to this final outcome.

I would like to express my gratitude to all members of the chemistry department of Clinical Pathgology, Ain Shams Specialized Hospital and My Special thanks go to all my colleagues in the clinical Pathology department for their impressive help, affectionate support, and advice.

I am obliged to my husband for his devotion, unlimited patience, willing support and understanding.

Last but not least I am wholeheartedly indebted to my parents, for their enthusiastic encouragement, perpetual support, and I pray God to reward them in return.

Perihan Hamdi

Table of contents:

Introduction and aim of the work
Indothelin4
-Endothelium-derived vasoactive factors:4
A- Prostacyclin:4
B-Endothelium-derived relaxing factor (EDRF):5
II-Endothelin11
A-Structure of endothelin11
B-Biosynthesis of endothelin
C-Production and release of endothelin:22
D-ET-1 elimination:25
E-ET receptors26
F-Biclogical actions of endothelin:
G-Biological actions of endothelin in vivo:33
H-Variation of endothelin in physiological and pathological
conditions:46
Normal pulmonary circulation49
I-Pulmonary blood flow, pressure and resistance50
II-Secondary pulmonary hypertension
III-Primary pulmonary hypertension:
IV-Clinical features:82
V-Diagnosis of pulmonary hypertension:83
VI-Management of pulmonary hypertension86
Methods of assay of ET-1 peptide92
A-Sample storage:92
B-Methods of assay:93
1-Bioassay:93
2-Immunoassay:93
Material and methods
Results116
Discussion
Summary and conclusions
References
Arabic summary

List of Tables and Figures:

Table 1: Laboratory exclusion criteria for control and both patient groups	123
'able 2: Comparison between control group and both patient groups regarding the exclusion	
riteria using student "t" test	122
Table 3: Data of the control group	123
Table 4: Mean & standard deviation of the studied parameters of the control group	124
Table 5: Data of patients with primary pulmonary hypertension	125
Table 6: Mean and standara deviation for the parameters of patients with primary pulmonary	
hypertension	126
Table 7: Data of patients with secondary pulmonary hypertension	127
Table 8: Mean & Standard deviation for the studied parameters of patients with secondary	
pulmonary hypertension	128
Table 9: Plasma arterial and venous ET-1 level in the two patient groups compared to the control	
group using "student t" test	129
Table 10: "Student t test" between ETA & ETV in control group and patient groups	130
Table 11: Correlation between ET-A and all other parameters in patients with primary	
pulmonary hypertension	131
Table 12: Correlation between ET-V and different parameters in group of primary pulmonary	
hypertension	132
Table 13: Correlation between ETA and different parameters in group of patients with secondary	
pulmonary hypertension	133
Table 14: Correlation between ET-V and different parameters in group of patients with	
secondary pulmonary hypertension	134
Figure 1: Correlation between ET-Aand ET-V in patients with secondary pulmonary	
hypertension	135
Figure 2: Correlation between ET-A and PASP in group II of secondary pulmonary hypertension	136
Figure 3: Correlation between ET-A and mean PAP in group II of secondary pulmonary	
hypertension	137
Figure 4: Correlation between ET-A and PADP in group II of secondary pulmonary hypertension	138
Figure 5: Correlation between ET-V and PASP in group II of secondary pulmonary hypertension	139
Figure 6: Correlation between ET-V and PADP in group II of secondary pulmonary hypertension	140
Figure 7: Correlation between ET-V and mean PAP in group II of secondary pulmonary	
hypertension	141
Figure 8: Correlation between ET-A and ET-V in the control group	142
Figure 9: Comparative study between control and all studied groups regarding ET-A and ET-V	143

List of abbreviations

(L)AP: Left atrial pressure

5HT: Serotonin

Ache: Acetyl choline esterase ANP: Atrial natriuretic peptide AVP: Arginine vasopressin BNP: Brain natriuretic peptide

CCD: Cortical collecting duct

DBP: Diastolic blood pressure

EDHF: Endothelin derived hyperpolarizing factor

EDRF: Endothelium derived relaxing factor

ET-1: Endothelin-1

ETA: Arterial endothelin ETV: Venous endothelin

GFR: Glomerular filtration rate

HR: Heart rate

IMCD: Inner medullary collecting duct

ir ET-1: Immunoreactive ET-1 KIU: Kallikrein inhibitory unit

LTB4: Leukotriene B4 LTC4: Leukotriene C4

MPP: Mean pulmonary pressure

NO: Nitrous oxide

NOS: Nitrous oxide synthase

O2-: Superoxide anions

OMCD: Outer medullary collecting duct PADP: Pulmonary artery diastolic pressure PASP: Pulmonary artery systolic pressure

PDP: Pulmonary diastolic pressure

PGI2: Prostacyclin

PPH: Primary pulmonary hypertension

PSP: Pulmonary systolic pressure

1ry P+: Primary pulmonary hypertension

2ry P+: Secondary pulmonary hypertension

PVR: Pulmonary vascular resistance

PWP: Pulmonary wedge pressure

rhSOD: Recombinant human superoxide dismutase

SBP: Systolic blood pressure

TNF: Tumour necrosis factor

TXA2: Thromboxane

Introduction and aim of the work

Endothelin is a 21 amino acid peptide synthesized by endothelial cells as a prepro-endothelin (* 200 amino acids), which is cleaved to an intermediate form of proendothelin or big endothelin (* 39 amino acids). Subsequently, an endothelin converting enzyme cleaves the big endothelin between tryptophan 21 and valine 22 to form the mature 21 amino acid endothelin (Yanagisawa et al., 1988).

Endothelin exists in three different isoforms: Endothelin-1 (ET-1), endothelin 2 (ET-2) and endothelin 3 (ET-3) (Itoh et al., 1988). Endothelin receptor is widely distributed not only in the vascular system but also in such tissues as kidneys, lungs, adrenal glands and neurons (Koseki et al., 1989).

Endothelin-1 induces vasoconstriction in a variety of vascular beds, possibly by directly or indirectly modulating vascular smooth muscle dihydropyridinesensitive calcium channels responsible for influx of exterior calcium ions without depolarization of the membrane, or by activating other pathways of transmembrane signaling (Simonson et al., 1989).

Endothelin-1 is quickly eliminated by the lungs and kidneys. In fact, these two tissues have a lot of high affinity binding sites for endothelin-1. These two tissues also exhibited high neutral endopeptidase activity, which may play an important role in degradation of endothelin (Vijeyaraghavan et al., 1990).

At an early stage of primary pulmonary hypertension, elevated pulmonary vascular resistance has been shown to be amenable to vasodilators, indicating a significant component of vasoconstriction. In addition, migration of fibroblasts into the intima of pulmonary arteries has been reported early in the course of primary pulmonary hypertension (Heath et al., 1987). Although there is no reliable biochemical marker for primary pulmonary hypertension, endothelin-1 may be implicated in the pathogenesis as it could promote both these processes by virtue of its potent vasoconstrictor effects and smooth muscle proliferative actions (Dubin et al., 1989).

Therefore, pulmonary production of endothelin-1 might contribute to the progressive vascular narrowing in primary pulmonary hypertension and consequent increased pulmonary vascular resistance (Steizner et al., 1990).

Measurement of arterial and venous endothelin-1 may identify a subgroup of patients with pulmonary hypertension who share a common basic abnormality.

Direct assessment of the functional importance of endothelin-1 to the manifestations of pulmonary hypertension may lead to the development of antagonists to endothelin-1 or inhibitors of its production.

Aim of the work

The aim of this work was to study the level of endothelin-1 in arterial and venous blood in patients with primary and secondary pulmonary hypertension, and to evaluate its role in the pathogenesis of this condition.

Material and Methods:

This study included 23 patients with pulmonary hypertension (primary and secondary) as well as 10 healthy controls.

The subjects in this study were subjected to:-

- 1- Full history and clinical examination.
- 2- Cardiac catheterization for patients only.
- 3- Routine laboratory investigations including hepatic, renal function tests and electrolytes.
- 4- Plasma endothelin-1 determination by radioimmunoassay.

Review of Literature

Endothelin

I-Endothelium-derived vasoactive factors:

To maintain the patency of the blood vessels, the endothelial cells synthesize many vasoactive substances such as prostacyclin, endothelium-derived relaxing factor and endothelin-1 (Vane et al., 1990).

A- Prostacyclin:

Prostacyclin (PGI2) was discovered by Moncada et al. 1976 as a major member of prostaglandins produced by endothelial cells. Mechanical or chemical perturbation of cell membranes results in the formation and release of prostacyclin without storage in the cells. Prostacyclin generation is stimulated by pulsatile pressure, a number of endogenous mediators, and some drugs. Endogenous chemical stimulants include substances derived plasma, such as bradykinin and thrombin, and those liberated from stimulated platelets such as serotonin, platelet derived growth factor, interleukin-1 and adenine nucleotides (Forsberg et al., 1987). Prostacyclin synthesis is initiated by the enzyme phospholipase A2 which liberates arachidonic acid from membrane phospholipids. The enzyme cyclooxygenase converts arachidonic acid into prostaglandin endoperoxides. Prostacyclin synthase subsequently forms prostacyclin

from the endoperoxide prostaglandin H2 (Vane et al., 990).

Physiologically, prostacyclin is a local hormone rather than a circulating one. The release of prostacyclin by endothelial cells affects the local environment on the abluminal side of the vessel where it causes relaxation of the underlying smooth muscle. In the lumen it prevents platelets and perhaps other blood cells from clumping onto the endothelium (Vane et al., 1990).

In the lung pulses of prostacyclin reverse sustained vasoconstriction initiated by prostaglandin $F2\alpha$ or thromboxane A2. It has been suggested that endothelium responds to vasoconstriction by release of PGI2 thus modulating vasoconstriction (Higgenbottam, 1994).

B-Endothelium-derived relaxing factor (EDRF):

Stimulation of muscarinic receptors on endothelial cells trigger the release of EDRF which causes relaxation of the underlying smooth muscle (Furchgott, 1983).

Ignarro et al. (1988) suggested that EDRF might be nitrous oxide NO or some closely related unstable radicle species. Similarly, Furchgott (1988) proposed that EDRF is the free radical (NO). The assumption was based on

the fact that, similar to EDRF, (NO) is labile as indicated by the transiency of the relaxation that it induces, its relaxing effect is blocked by hemoglobin and by generation of superoxide anions (O2⁻), and it is markedly potentiated by superoxide dismutase (a scavenger of superoxide anions) (Furchgott, 1989).

Is there more than one EDRF?

De Mey et al. (1982) first made the suggestion that certain endothelium-dependent dilators in the canine femoral artery may release different relaxing factors when they found that certain inhibitors could block the relaxation elicited by some of the relaxants but not by others. The most compelling evidence for the existence of two relaxing factors comes from electrophysiological studies. Acetylcholine causes endothelium-dependent hyperpolarization in various arteries due to a diffusable factor (endothelium-derived hyperpolarizing factor EDHF) that is distinct from (NO) (Higgenbottam, 1994).

The elaboration of (NO) requires the substrate molecules of L-arginine and dioxygen. An enzyme nitrous oxide synthase (NOS) is responsible for this step. A number of isoforms of (NOS) have now been identified. The genes for endothelium and brain NOS have considerable homology but differ from macrophage NOS. In endothelium, the major isoform of NOS is a constitutive or continuously expressed enzyme. It has a heme associated

moiety and requires NADPH, tetrahydrobiopterin, and alcium/calmodulin as cofactors. Activation of the enzyme involves a rise in cytosolic calcium concentration (Higgenbottam, 1994).

EDRF activated guanylate cyclase of vascular smooth muscle and the resulting increase in cyclic GMP has a causal role in the relaxation of the muscle (Ignarro et al., 1984).

Hemoglobin is a rapidly acting inhibitor οf endothelial relaxation (Martin et al., 1985). Ιt inhibits the increase in cyclic GMP associated with such relaxation. Hemoglobin also inhibits endotheliumdependent relaxation by reacting with EDRF before the latter gains access to the guanylate cyclase of the smooth muscle cells (Palmer et al., 1987). (NO) particularly high affinity for heme, some 280 times the affinity oxygen shows to heme. Binding of nitrous oxide to the heme moiety of NOS activates guanylate cyclase leading to increase intracellular cyclic GMP (Higgenbottam, 1994).

There is a flow dependent release of EDRF that is related to shear stress on the luminal surface of the endothelial cells (Rubanyi et al., 1986). ADP and thrombin were the first blood constituents shown to trigger endothelium-dependent responses (De-Mey et al.,