Institute of Environmental Studies and Research Ain Shams University

RADIATION AS A PRACTICE FOR DEPRESSING THE ACTIVITY OF VECTOR SNAILS OF SCHISTOSOMIASIS PRESENT IN BOTH FRESH WATER AND SOIL SUBSTRATUM

632136

THESIS

Submitted to
Institute of Environmental studies and Research,
Ain Shams University, Cairo
for the Ph.D. Degree

By
BAYAUMY BAYAUMY MOSTAFA
Assistant Researcher, Theodor
Bilharz Research Institute

SUPERVISED

By

Prof. Dr. M.I. Abdel Megeed Professor of Pesticides, Plant Protection Department, Faculty of Agriculture, Ain Shams University Prop. Dr. M.Z. Roushdy
Head of the Environmental
Research and Medical
Malacology Department,
Theodor Bilharz Research Institute

Prof. Dr. N. E. Hafez Hot Lab. Atomic Energy Establishment, Egypt.

1996

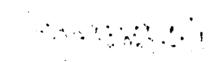
APPROVAL SHEET

Name of Student: Bayaumy Bayaumy Mostafa

Degree : Ph.D. (Environmental Science)

Title of Thesis : Radiation as a practice for depressing

the activity of vector snails of schistosomiasis present in both fresh


H.I. Abddregla

water and soil substratum.

This thesis for the Ph.D. degree has been approved by:

Committee in charge

Date 4 / 2/ 1996

ACKNOWLEDGMENT

The writer wishes to express his gratitudes to Prof. Dr. Mohamed Ibraheam Abdel-Megeed, Professor of Pesticides, Plant Protection Department, Faculty of Agriculture, Ain-Shams University for his kind supervision, continuous help, valuable advice, and constructive criticism. Sincere thanks are also extended to Prof. Dr. Mohamed El-Nonna, Professor of Soil, Soil Department, Faculty of Agriculture, Ain Shams University for his valuable suggestions, supervision and helpful encouragement throughout the work.

The author feels greatly indebted to **Prof. Dr. Menriet Zaki Roushdy**, Head of the Environmental Research and Medical Malacology Department, Theodor Bilharz Research Institute, for her supervision, offering facilities of the work, reading the manuscript, helpful suggestions throughout the course of the work.

The author also wishes to express his appreciation to **Prof. Dr. Nabil Hafez**, Hot Lab., Atomic Energy Establishment, Egypt for his guidance and continuous supervision.

Sincere thanks are also extended to **Dr. Nawal Haroon**, sistant Prof. of Medical Malocology, Theodor Bilharz Research re, for her help during this work.

CONTENTS

	Page
1. INTRODUCTION	1
II. REVIEW OF LITERATURE	- 3
1- Effect of chemical compound on biotic potential of	
snails	3
2- Effect of radiation on snails	6
3- Histological studies	10
4- Fate of radioisotopes in snails	11
5- The role of elements on the biotic potential of snails	12
III. MATERIALS AND METHODS	14
1- Maintenance of snails in laboratory	14
2- Exposure of snails to radiation by X-ray	15
3- The effect of sublethal doses of X-ray on the vector	
snails of schistosomiasis	15
3.1. The survival rate	15
3.2. The egg-laying capacity	15
3.3. The growth rate	16
3.4. The egg hatchability	16
4- Histological studies	17
5- Effect of sublethal doses of X-ray on the developmen	nt
of schistosome larval stages in the snails	17
5.1. Exposure of snails to miracidia	18
5.2. X-ray effect on cercariae	19
6- Effect of isotopes (Co ⁺⁺ and Cr ⁺⁺⁺) on the vector	
snails of schistosomiasis	19
6.1. The accumulation of the isotopes Co ⁺⁺ and	
Cr ⁺⁺ by the snails	20
atudiaa	23

	Pag
IV. RESULTS	24
1- Effect of sublethal doses of X-ray on the vector snails	
of schistosomiasis	24
1.1. Effect on the survival rate	24
1.2. Effect on the egg production	34
1.3. Effect on egg hatchability (Early and late stages)	41
1.3.1. <u>B.alexandrina</u> snails	44
1.3.2. <u>B.truncatus</u> snails	48
1.4. Effect on the growth rate	48
1.5. Histological studies of hermaphrodite gland of	
B.alexandrina after exposure to sublethal doses	
of X-ray	59
1.6. Effect on the infection rate and cercarial	
production	62
1.6.1. Biomphalaria alexandrina	62
1.6.1.1 Infection rate	67
1.6.1.2 Cercarial production	67
1.6.2. <u>Bulinus truncatus</u>	67
1.6.2.1 Infection rate	72
1.6.2.2 Cercarial production	72
1.7. Effect of X-ray on <u>S.mansoni</u> cercariae	72
2- Activity of cobalt (Co ⁺⁺) and chrome (Cr ⁺⁺) against	Į.
snails	77
2.1. Toxicity of cobalt and chrome	77
2.2. Effect of Co ⁺⁺ on snails	77
2.2.1. Effect on the survival rate	c
2.2.2. Effect on the egg laying capacity	
(egg production)	
2.2.3. Effect on the growth rate	
2.2.4. Accumulation of cobalt in vector	
schistosomiasis	

		Page
	2.2.4.1 B. alexandrina	107
	2.2.4.2 <u>B.truncatus</u>	109
	2.3. Effect of Cr ⁺⁺⁺ on snails	117
	2.3.1. Effect on survival rate	117
	2.3.2. Effect on the egg laying capacity	
	(egg production)	128
	2.3.3. Effect on the growth rate	133
	2.3.4. Accumulation of chrome in vector snails of	
	schistosomiasis	144
	3- Field studies	153
	3.1. Survey of the radioactivity	153
	3.2. Chemical analysis of canal and tap water	158
V	DISCUSSION	161
VI	SUMMARY	175
VII	REFERENCES	182

List of Tables

Table		Page
1	Survival rate of field B.alexandrina exposed to	_
	sublethal doses of X-Ray	25
2	Survival rate of Laboratory B. alexandrina exposed	
	to sublethal doses of X-Ray	27
3	Survival rate of field <u>B.truncatus</u> exposed to	
	sublethal doses of X-Ray	30
4	Suvival rate of Laboratory B.truncatus exposed to	
	sublethal doses of X-Ray	32
5	Effect of sublethal doses of X-Ray on the egg	
	laying capacity of field B. alexandrina	35
6	Effect of sublethal doses of X-Ray on the egg-	
	laying capacity of Laboratory Balexandrina	37
7	Effect of sublethal doses of X-Ray on the egg-	
	laying capacity of field B.truncatus.	39
8	Effect of sublethal doses of X-Ray on the egg-	
	laying capacity of Laboratory <u>B.truncatus</u>	42
9	Effect of X-Ray on the egg hatchability (early	
	developmental stage) of <u>B alexandrina</u>	45
10	Effect of X-Ray on the egg hatchability (Late	
	development stage) of <u>B. alexandrina</u>	47
11	Effect of X-Ray on the egg hatchability (early	
	developmental stage) of <u>Bulinus truncatus</u>	49
12	Effect of X-Ray on the egg hatchability (Late	
	developmental stage) of <u>Bulinus truncatus</u>	51
13	Effect of sublethal doses of X-Ray on shell	
	diameter of laboratory <u>B. alexandrina</u>	52
14	Effect of sublethal doses of X-Ray on shell height	
	of laboratory B.truncatus	55

List of Tables

Table		Page
15	The growth rate of laboratory B alexandrina and	
	B.trncatus after exposure to sublethal doses of X-	
	Ray	57
16	The growth rate of <u>B. alexandrina</u> (field and	
	laboratory) after exposure to sublethal doses of X-	
	Ray (mm/day).	58
17	The growth rate of <u>B.truncatus</u> (field and	
	laboratory) after exposure to sublethal doses of X-	
	Ray (mm/day).	60
18	The infection rate of <u>B.alexandrina</u> treated by	
	different sublethal doses of X-Ray	68
19	Effect of different doses of X-Ray on cercarial	
	output of B. alexandrina snails	70
20	The infection rate of <u>B.truncatus</u> treated by	
	sublethal doses of X-Ray	74
21	Effect of different doses of X-Ray on cercarial	
	output of B.truncatus snails	7 5
22	Effect of X-Ray on <u>S.mansoni</u> cercariae	78
23	Toxicity of cobalt (Co ⁺⁺) and chrome (Cr ⁺⁺⁺)	
	against B alexandrina.	79
24	Effect of Co ⁺⁺ on the survival rate of laboratory	
	B alexandrina.	82
25	Effect of Co ⁺⁺ on the survival rate of field	
	B.alexandrina.	84
26	Effect of Co ⁺⁺ on the survival rate of laboratory	
	B. truncatus.	87
27	Effect of Co ⁺⁺ on the survival rate of field	
	B. truncatus.	88
28	Effect of Co ⁺⁺ on the egg-laying capacity of	
	laboratory Balexandrina	93