ON THE FUNCTOR GENERATED BY A COHOMOLOGY

THESIS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE AWARD

OF

THE (M.Sc.) DEGREE

IN

(Pure Mathematics)

BY

Hoda El-Sherbiny Ibrahim

Department of Mathematics Faculty of Science Ain Shams University 51388

SUPERVISORS

Prof. Dr. A. A. Dabbour

Department of Mathematics Faculty of Science

Ain Shams University

Dr. N. F. Fathy

Department of Mathematics

Faculty of Science

Ain Shams University

Department of Mathematics Faculty of Science

Ain Shams University

CAIRO

1994

ACKNOWLEDGMENT

"FIRST AND FOREMOST, THANKS ARE TO GOD,

THE MOST BENEFICENT AND MERCIFUL."

I would like to acknowledge my gratitude and thankfulness to Prof. Dr. Abd El-Sattar A. Dabbour, Department of Mathematics, Faculty of Science, Ain Shams University, for suggesting the topic of the thesis and invaluable help during the preparation of this thesis.

I wish to express my gratitude to **Dr. Nashaat F. M. Farid**,

Department of Mathematics, Faculty of Science, Ain Shams University,

for his invaluable encouragement during this thesis.

I would like to express my deep thanks to Prof. Dr. Ahmed G.

El-Sakka, Head of Department of Mathematics, Faculty of Science,

Ain Shams University, for his continuous encouragement.

To my parents and my family,

to prof. Mohamed H. Fahmy (Al-Azhar Univ.),

to prof. Peter Schneider (Germany),

to prof. Leonard D. Mdzinarishvili (Georgia),

and to Dr. Laila M. Soueif (Cairo Univ.).

To all of them the author expresses her warmest gratitude.

CONTENTS

	Page
SUMMARY.	i
CHAPTER I : Preliminaries.	
1.1 : General Topological and Algebraic Concepts	1
1.2 : Categories, Functors and Homology Theory	13
1.3 : Chain and Cochain Complexes	35
1.4 : The Singular Homology	43
CHAPTER II : The Čech-Alexander-Spanier Cohomology Theory and its Duality .	
2.1 : The Čech-Alexander-Spanier Cohomology	61
2.2 : The Steenrod Homology Theory	72
2.3 : The Homology Theory with Compact Supports	79
2.4 : The Main Diagram.	83
CHAPTER III : A Generalization of the Alexander	
Duality Theory.	
3.1 : Algebraic Mapping Cone	91
3.2 : Massey's Isomorphism Theorems	122
CHAPTER IV: On the Functor Generated by a Cohomology.	
4.1 : Inverse Spectrum of Groups with Homomorphisms.	131
4.2 : The Cogosvili D-Groups	135

	Page
4.3 : The D-Functor	138
4.4 : The Relation between the Cohomology Groups	
and the Čogošvili D-groups	145
REFERENCES.	149
ARABIC SUMMARY.	

SUMMARY

SUMMARY

It should be kept in mind that homology and cohomology theories are over 90 years old, and the entire subject has been worked over and added to by some of the most ingenious and imaginative mathematicians of the world. The two main kinds of homology and cohomology theories are the singular theory, [19], and the Čech-Alexander-Spanier type theory, [11], [33]. Although the two theories give the same results on topological spaces which are locally nice, it is well known that on general spaces the Čech-Alexander-Spanier type cohomology theory has several technical advantages over the singular theory. For example, M. Barratt and J. Milnor, [4], have given a simple example of a compact subset A of R³ such that the singular cohomology groups with rational coefficients, Hⁿ(A, Q), are nonzero for infinitely many values of n.

Indeed this is one of the most striking differences between singular homology or cohomology, and the Čech- Alexander-Spanier type of homology or cohomology. In spite of these advantages, the definition and development of the homology theory associated with Čech-Alexander-Spanier cohomology has heretofore seemed rather involved and complicated.

Massey, [23], [24], has given a clear and simple systematic exposition of the Čech-Alexander-Spanier type of cohomology theory and its associated homology theory, which is sometimes referred to