BIOC AL STUDIES OF SIGNIFICANCE OF

DN 1DY AN STWETTC PHASE FRACTION

A COGN FACTORS IN THE URINARY

DER CARCINOMA

Thesis
nitied for partial fulfillment of
er Degree in Biochemistry

Se, of Biochemistry

Inder Supervision of

Prof. Abdel Moniem El-Gohary Frof. Mohamed M. Abdel Fattah

M. Abd S/ Feller

Prof. - Dischamistry Prof.

Prof. of Biochemistry

Air Shams, Faculty of Science

Ain Shams, Facurry of Science.

1'

Pro

P .... 1

Jagnostic Unit

Biochemistry Deparament Faculty of Science Ain Shams University

1996



## بسم الله الرحمن الرحيم

# " وما أوتيتم من العلم الا قليلا "

صدق الله العظيم

الأسراء (٥٥)

### Acknowledgment

#### First and foremost thanks to God

My deepest appreciation to the late **Prof. Abdel Moniem El-Gohary,** Professor of Biochemistry, Ain Shams Faculty of Science for his kind supervision and valuable support. Indeed his sudden death was a great loss to a symbol founders of the Biochemistry Dept. at Ain Shams Faculty of Science.

I would like to express my deep gratitude to **Prof. Mohamed**M. Abdel Fattah, Professor of Biochemistry, Ain Shams Faculty of
Science for his kind supervision, continuos encouragement and
generous attitude. His tremendous efforts and intelligent remarks
and cordial help throughout the various steps of this work are
highly appreciated.

No words can express my sincerest appreciation and profound gratitude to **Prof. Ali Khalifa**, Professor of Biochemistry, Head of Oncology Diagnostic Unit, Ain Shams Faculty of Medicine, who gave me the chance to work in the Oncology Diagnostic Unit. He really offered all things, time, effort and deep experience to stimulate and push me forward; I owe a heavy debt of gratitude for

his fruitful remarks and fatherly kindness throughout the preparation of this work. Indeed it is a great honor to work under supervision of the pioneer of tumor markers field in Egypt.

I am greatly indebted to the eminent leader in the area of Flow cytometry **Dr. Sanaa Eissa**, Ass. professor of Biochemistry, Ain Shams Faculty of Medicine for her valuable guidance and great support. Her national and international efforts as a distinguished flow cytometry and tumor biology researcher are worthly mentioning.

I would like to express my deepest thanks and gratitude to

Prof. Mostafa El-Rasad, Professor of Biochemistry, Ain Shams

Faculty of Medicine, for his continuous advices and great help.

I would like also to thank **Dr. Mostafa Kamal**, Assistant professor of Community Environmental and Occupational Medicine, Ain Shams Faculty of Medicine, for his great efforts during performing the statistical part of this study.

Special words of thankfulness are directed to my friends and colleagues who helped and supported me throughout this work.

## **CONTENTS**

|                                           | Page |
|-------------------------------------------|------|
| <b>©</b> List of abbreviations            |      |
| ©List of tables                           |      |
| ©List of figures                          | ix   |
| <b>©</b> Introduction and aim of the work |      |
| ©Review of literature                     |      |
| ☞Urinary Bladder                          | 3    |
| *Bladder Cancer                           | 7    |
| <b>\$</b> Epidemiology                    | 7    |
| ♥ Etiology                                | 10   |
| Classification of urinary bladder tumors  | 24   |
| Bladder cancer grading and staging        | 31   |
| Tumor markers                             | 37   |
| &Clinical applications                    | 41   |
| <b>\$Classification</b>                   | 45   |
| ♥Tumor markers in bladder cancer          | 58   |
| Cancer antigen 19-9 (CA19-9)              | 64   |
| The cell cycle                            |      |
| Molecular biology of the cell cycle       | 72   |
| <b>♥Tumor</b> growth                      | 75   |
| Flow cytometry                            |      |
| ♥Historical over view                     | 77   |

|                  | ♥Principles and anatomy                          | 80  |
|------------------|--------------------------------------------------|-----|
|                  | <b>\$Aplications</b>                             | 88  |
|                  | SDNA flow cytometry of human solid tumors        | 95  |
|                  | ♥Flow cytometry of bladder cancer                | 98  |
|                  | \$Flow cytometric Synthetic phase fraction (SPF) | 101 |
|                  | Sevaluation of DNA flow cytometry as a           |     |
|                  | screening test for bladder cancer                | 105 |
| Patients a       | and methods                                      |     |
| ن∉ Pa            | tients                                           | 110 |
| Œ. We            | ethods                                           |     |
|                  | ♥Flow cytometric analysis                        | 112 |
|                  | ♥Determination of serum CA19-9                   | 118 |
|                  | ♥Determination of serum Urea                     | 125 |
|                  | ♥Determination of serum Creatinine               | 127 |
|                  | ♥Determination of serum AST                      | 128 |
|                  | ♥Determination of serum ALT                      | 129 |
|                  | \$Serological methods for determination of       | 131 |
|                  | bilharziasis                                     |     |
|                  | Bata processing and statistical analysis         | 133 |
| Results          |                                                  | 135 |
| ©Discussion      | n                                                | 190 |
| <b>©</b> Summary | and conclusion                                   | 200 |
| Reference        | es                                               | 204 |

**©**Individual data

263

**©**Arabic summary

#### LIST OF ABBREVIATIONS

∴ Mean absorbance change.

°C : Degree centegrade.

μg : Microgram.

μL : Micro-litter

μm : Micrometer.

% : Percent.

AAT : Alpha-1-antitrypsin.

ABO : Blood grouping system.

ACTH: Adrenocorticotropic hormone.

ADC : Analog to digital converter.

ADH : Antidiuretic hormone.

AFP : Alpha-feto protein.

*ALP* : Alkaline phosphatase.

ALT : Alanine aminotransferase.

AO : Acridine orange.

AST : Aspartate aminotransferase.

ATP : Adenosine triphosphate.

 $B_2$ -M:  $\beta_2$ -Microglobulins.

BD : Bile duct

BIHAT : Bilharzial indirect hemeagglutination test.

Brdu : Bromodeoxyuridine.

Brdu LI : Bromodeoxuridine labeling index.

CA125 : Cancer antigen 125

CA15-3 : Cancer antigen 15-3

CA19-9 : Cancer antigen 19-9

CA195 : Cancer antigen 195

CA50 : Cancer antigen 50

CA549 : Cancer antigen 549

**CA74-4** : Cancer antigen 74-4

CEA : Carcinoembrionic antigen.

CK : Creatinine kinase.

**CK-BB**: Creatinine kinase BB isoenzyme.

**CMA**: Clonic mucoprotein antigen.

**CRP** : C-reactive protein.

CT : Calcitonin.

Cu : Copper.

*CV* : Coefficient variation.

*DAPI* : 4,6-Diamino 2-phenylindole.

DI : DNA index.

dL : Deciliter.

**DMSO**: Dimethyl sulfoxide.

DNA : Deoxyribonucleic acid.

*EB* : Ethidium bromide.

EDTA: Ethylene Diamine Tetra Acetate.

EGFR : Epidermal growth factor receptors

EIA : Enzymeimmunoassay

*ER* : Estrogen receptors.

Esoph : Esophagus.

FALS : Forward angle light scatter.

FCM: Flow cytometry.

Fig : Figure

Fl. : Florida.

G: Tumor grade

g : gram.

 $G_{\theta}$ : Quiescent phase.

 $G_1$ : Gape 1

 $G_2$ : Gape 2

Gast : Gastric.

GCR : Glucocorticoid receptors.

GGT : Gamma glutamyl transpeptidase.

*GH* : Growth hormone.

HCC: Hepatocellualr carcinoma.

HCG: Human chronic gonadotropin.

HMFG : Human milk fat globule antigen.

*HPL* : Human placental lactogen.

*r.* : Hour.

; G: Immunoglobulin G.

*HA* : Indirect hemeagglutination.

L : Liter.

LASER : Light amplification by stimulated emission of radiation.

*LDH* : Lactate dehydrogenase.

*LH* : Leutinizing hormone.

*LPR* : Lysing and Permeabilizing reagent.

LS : Light scatter.

M: Distant metastasis

*m* : Meter.

M phase : Mitotic phase.

M. wt. : Molecular weight.

MC: Mean channel.

MCA: Mucinous-like carcinoma antigen.

*MEIA* : Microparticles enzymeimmunoassay

min. : Minute.

mL : Milliliter.

mmol : Milimolecule

*MN* : Mononuclear blood group system.

MNU : Methylnitrosourea

MU : 4-Methylumbelliferone

MUP : 4-Methylumbeliferyl phosphate

N : lymph node involvement

NCI: National Cancer Institute.

ng : Nanogram.

*NGI* : Non-gastrointestinal malignancy.

*nm* : Nanometer.

*No* : Number.

**NSE**: Neuron specific enolase.

Oct. : October.

*OD* : Optical density.

**PAP**: Prostatic acid phosphatase.

**Pg-R**: Progesterone receptors.

PI : Propidium iodide.

*PMT* : photo multiplier tube

**POA** : Pancreatic oncofetal antigen.

PRL : Prolactin

**PSA**: Prostatic specific antigen.

PT : Pathological staging

**PTH** : Parathyroid hormone.

ras : Rat sarcoma gene.

**RBCs**: Red blood cells.

**RF-C**: Replication factor-C

RIA: Radioimmunoassay

RNA: Ribonucleic acid

**RP-A** : Replication protein-A

SCC : Squamous Cell carcinoma

SCCA: Squamous cell carcinoma antigen.

SD: Standard deviation.

E : Standard error.

e : Selenium

'ec : Second.

*P-1* : Pregnancy specific B<sub>1</sub>-glycoprotein.

SPF : Synthetic phase fraction.

*ST* : Sialyl transferase.

T : Tumor

t : Time.

TA-4 : Tissue antigen-4

TAG-72 : Tumor associated glycoprotein-72

*TATI* : Tumor associated trypsin inhibitor.

TCC : Transitional cell carcinoma

**TK**: Thymidine kinase.

TLI: Thymidine labeling index.

TNM: Tumor- Node- Metastasis

TPA : Tissue polypeptide antigen.

**TSH**: Thyroid stimulating hormone.

TUR: Transuretheral resection

U : Unit.

USA : United State of America

VMA : Valinyl mandilic acid.

WHO: World Health Organization

X: Mean

Zn : Zinc