STUDY OF EOSINOPHILS

IN

NORMAL AND HIGH RISK NEWLY BORN BABIES

Thesis

Submitted for the partial fulfilment of the Master degree M.Sc.

in Pediatrics

BY

Gamal Ahmed Helmy Mottier

M.B.B.CH.

Under the supervision of

Prof. Mohammed Ahmed Awadallah

Professor of Pediatrics.

Ain Shams University, Cairo.

Faculty of Medicine.
Ain-Shams University.

1 9 8 3

150

ACKNOWLEDGEMENT

This work owes its presence to the sincere supervision of Professor Mohammed Ahmed Awadallah, Professor of Pediatrics, Faculty of Medicine, Ain Shams University for his kind help, constant support and encourgement with-out which this work would have never seen light.

It is worthy to say how much I owe thanks to Dr.

Mona Salem, assistent professor of Pediatrics, Ain

Shams university for her valuable advice and encourgement.

I would like to express may gratitude to Dr.

Hamed El-Khyat, lecturer of Pediatrics, Ain Shams

University for his generous help and guidance throughout this work.

C o n t e n t s

		Page.
I .	Introduction	1
II .	Aim of the work	. 3
III.	Review of literature	. 4
	* The Eosinophil	
	- Morphology and Structure	• 4
	- Eosinophilopoiesis	. 7
	a- Eosinophil function	. 11
	- Normal values and physiologic variation.	. 16
	- Eosinopenia	. 18
	- Eosinophilia	. 24
	* The Eosinophil in Normal and High risk	
	neonates	•
	- The Eosinophil in normal neonates	. 30
	- The Eosinophil in high-risk neonates	. 32
IV.	Material and Methods	. 40
V .	Results	. 48
vı .	Discussion	. 78
VII.	Summary, conclusion and recommendation	.103
VIII	.References	106
IV.	Arabic Summary	

INTRODUCTION

INTRODUCTION

The cosinophil was discovered by Paul Ehrlich in 1879 (Hirsch and Hirsch, 1981). Despite this 100 years of study since Ehrlich's discovery, it was the last decade that could be considered as an entery point to the huge and often conflicting mass of observations concerning the function of this cell. All of the available information fail to point clearly to the function of this cell. Apparent contradictions stand in the way of any attempt to define consistent pattern of the cosinophil behaviour (Beeson, 1981).

The number of eosinophils in transit in the peripheral blood is exceeded several hundred-folds by the number of the eosinophils in the tissues (Rytömaa, 1960). Moreover, residence time for the eosinophil in tissues is greater than that in the blood (Foot, 1963). The predominant tissue localization of these cells suggests—that the principal functions of the eosinophil are accomplished in the tissue. However, the tissue sequestration of the cells makes investigations of the function of the eosinophil difficult because of limited cell numbers and uncertainty as to the extent that the

peripheral blood eosinophil reflects the biochemical and biological characteristics of its tissue counter-part (Weller, ct. al., 1981).

Thus, the eosinophil continues to be a mystery. Its behaviour and function remain a puzzling question (Beeson, 1981).

AIM OF THE WORK

AIM OF THE WORK

Very scanty and incomplete studies have been done in relation to the eosinophil count in normal and high-risk meanates and the changes of this count during the meanatal period.

We decided to carry out the present work intending to study the pattern of changes of absolute eosinophil count "AEC" throughout the neonatal period in normal newborns as well as in high-risk neonates including preterms, small for gestational age "SGA", newborn infants of toxaemic mothers "ITM" and newborn infants of diabetic mothers "IDM".

The correlation between absolute cosinophil count and the clinical course of those newborns will be attempted.

REVIEW OF LITERATURE

THE EOSINOPHIL

Morphology and Structure: (Fig.i)

The eosinophil is a specialized granulocyte measuring 10-15 micrometers in size i.e.similar to that of the neutrophil. The nucleus, as seen in smears stained with Wright's stain, occupies a central or eccentric position. It is purplish blue in colour, with coarse chromatin and nuclear membrane but no nucleoli. The nucleus is lobulated with 2-3 lobes but it is unusual to find more than two lobes in the mature cosinophil and these lobes are larger than those seen in neutrophils. The cytoplasm is relatively plentiful, homogenous clear pink in colour with no perinuclear zone but with clear ecto and endoplasm. It contains few spherical mitochondria but appears not to contain lysozymes or alkaline phosphatase. Of the mature granulocytes; eosinphils display the most intense staining with peroxidase, the intense eosinophilic staining appears to be due to their basic protein content (Wintrobe, et al., 1981). The cosinophil is identified by virtue of its characteristic granules which are numerous, circumscribed, uniform in shape

and stained red with Romanowsky stains, bright orange or yellowish-red with Wright's stain. These granules are coarse and considerably larger than those seen in the neutrophil (Wintrobe et al., 1981). The eosinophil granule appears somewhat refractile under the light microscope but when viewed by the electron microscope, consists of an electron dense core, called the crystalloid, and an electron-radiolucent matrix (Miller, et al., 1966).

Human eosinophilic granules contain:

- 1) Several cationic proteins as the major basic protein (MBP) which is an arginine rich protein that accounts for more than 50% of the protein content of the eosinophilic granules (Gleich, et al.,1981), the eosinophil cationic protein "ECP" (Olssen, et al., 1977) and several other proteins such as the one forming Charcot-Leyden crystals (Gleich, et al., 1976).
- 2) Myeloperoxidase enzyme which is distinct from neutrophil myeloperoxidase both biochemically and genetically (West, et al., 1975).
- 3) Many other enzymes such as: aryl sulfatase B; B-glucuronidase and acid B-glycerophosphatase enzyme (West, et al., 1975).

at higher magnification in 8 to illus-Development in Immaliane Hyperiensi-High resolution electron nsignograph of human correspond grane ales. The area outlined to A is shown trate the pencelic structure of the cryscalled internan (A) × 64,000, (B) 240,000. [From Zucker-Franklin D. in Bach MK (ed). Modern Conzepts and ancy. New York, Marcel Debley, 1977, pp 407-430)

distributed electron dense herearchitematin, few nuclear poses (P), and loss of the nuotholise. Since that in the mature cell the typical granule is foreball shaped (arrow) and the controlling core extends parallel with its long axis. When more than one crystal has u, as in granules A and B, the contour of the granule becomes distorted. The 30-

presence of the grande matrix source different granules is sent to better advantage in B. This may reflect the differences at the type or concentration of their ensure cont. (A) × 1,000, (B) × 9,000.

Marure human cosmophal illustrating labulated nucleus with peripherally

(From Zucker-Franklin D.in Bach MK(ed): Modern Concepts and Developments in Immediate Hypersensitivity. New York: Marcel nature and Antara 1077) Fig. (i) Mature human eosinophil

- 7 -

The eosinophils show irregular repeated pseudopodia formation and they are at least as motile as neutrophils (Anderson, et al., 1969).

Eosinophilopoiesis:-

The production of eosinophils occurs only in the bone marrow in human beings (Wintrobe, et al., 1981).

The process of eosinophilopoiesis involves four bone marrow compartments or pools; a stem cell pool, a mitotic pool, a maturation pool and a storage pool (Mahmoud, 1981).

The stem cell pool includes a common precursor cell or a pleuripotent stem cell which is not committed to develop into a specific cell line but divides to produce the differentiated formed elements of the blood (Schofield, 1979). There is a stage of development, between the common pleuripotent stem cell and the differentiated cell, in which the cells although still primitive, are committed to one line of differentiation i.e a committed granulocyte stem cell which is specific for each cell line (Stohlman, et al., 1973).

- 8 -

The mitotic pool includes eosinophilic promyelocytes and myelocytes (Spry, 1971a).

The metamyelocytes and more mature forms are regarded as postmitotic stages undergoing maturation (Hudson, 1968 and Archer, 1970). Eosinophils exhibit the same maturation phenomena as neutrophils including condensation in nuclear chromatin, decrease in size and ultimate disappearance of nucleoli, reduction in the size of Golgi apparatus and formation of the characteristic granules (Boll and Kuhn, 1965 and Parwaresch, et al., 1976). Maturation of eosinophils in the bone marrow takes 3-6 days (Bellanti, 1978).

The storage pool consists of the substantial marrow reserve of mature cells which can be mobilized on demand. In the guinea pig, it was estimated that there are 300 to 400 marrow cosinophils for each cosinophil in the blood (Spry, 1971a).

Under normal conditions, eosinophil production in vivo maintains the number of circulating cells within a narrowly defined range. The importance of this regulatory function can be appreciated by recognizing the short, 3-4 hours, half life of the mature eosinophil in the peripheral blood(Bellanti, 1978). In addition, the eosinophilopoietic system