Ain Shams University Faculty of Engineering Structural Engineering Department

Behavior of Sand Under Seismic Effect

(Densification and liquefaction

By

Mohamed Ahmed Abdel-Motaal B. Sc. Civil Eng. - Hon. (1991)

Ain Shams University

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Civil Engineering

Supervised By

Prof. Dr. Ing.
Farouk Ibrahiem. El-Kadi
Prof. of Soil Mech. and Foundation
Structural Engineering Department
Faculty of Engineering
Ain Shams University

Prof. Dr. Eng.
Tarek Ahmed Macky
Prof. of Soil Mech. and Foundation
Structural Engineering Department
Faculty of Engineering
Ain Shams University

Cairo - Jan., 1995

اللهم علمنا ما ينفعنا و انفعنا بما علمتنا

EXAMINER COMMITTEE

SIGNATURE

1- Prof. Dr. Eng. Mohamed Ezzat Sobeh
Prof. of Theory of Structure
Faculty of Engineering - Cairo University

M. Sil

2- Prof. Dr. Eng. Ezzat Abdel-Fattah Emera
Prof. of Soil Mech. and Foundation
Faculty of Engineering - Ain Shams University

E Futher

3- Prof. Dr. Ing. Farouk Ibrahiem El-Kadi
Prof. of Soil Mech. and Foundation
Faculty of Engineering - Ain Shams University

ty

4- Prof. Dr. Eng. Tarek Ahmed Macky
Prof. of Soil Mech. and Foundation
Faculty of Engineering - Ain Shams University

Date: / 01 / 1995

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master in Structural Engineering.

The work included in this thesis was carried out by the author in the Department of Structural Engineering, Ain Shams University, from January, 1993 to November, 1994.

No part of this thesis has been submitted for a degree of qualification at any University or Institution.

Date: 18/1/1995
Signature: Abdel motación
Name: Mohamed Ahmed Abdel-Motaal

Ain Shams University Faculty of Engineering Department of Structural Engineering

Abstract of M.Sc. thesis submitted by:

Mohamed Ahmed Abdel-Motaal

Title of thesis:

Behavior of Sand Under Seismic Effect

(Densification and Liquefaction)

Supervisors: 1) Prof. Dr. Ing. Farouk Ibrahiem El-Kadi.
2) Prof. Dr. Eng. Tarek Ahmed Macky

Registration date: /01/1993 Examination date: /01/1995

ABSTRACT

During the Earthquake of October 12, 1992, in Dahshour, near Cairo, Egypt, extensive damage to engineering structures occured as a results of liquefaction and densification of the sandy soil on which they were supported. At El-Aiiat and the surrounding villages, liquefaction had taken place in a form of "sand fountains" and excessive settlement in a major highway.

In this search, laboratory test programme was prepared to perform the laboratory tests and the exprimental studies concerning the behavior of sand under seismic effect (cyclic loading effect). a simple shear device and a shaking table were locally fabricated and used for this experimental study. Different parameters, such as relative density, base acceleration, frequency, percentage of fine, and shear strain amplitude, were changed to study its effect on both liquefaction and densification of three different soil samples. Conclusions and recommendations were listed at the end of this search.

ACKNOWLEDGEMENT

The author wishes to express his deep gratitude and sincere appreciation to **Professor Dr. Ing. Farouk I. El-Kadi**, Professor of Soil Mechanics and Foundation, Faculty of Engineering, Ain Shams University, for his guidance, supervision and review of this work.

The author is also very grateful to **Professor Dr. Eng. Tarek A. Macky**, Professor of Soil Mechanics and Foundation, Faculty of Engineering, Ain Shams University, for his helpful and constructive suggestions, and for continuous encouragement he generously offered during this work. Also, he devoted much of his precious time and effort in order to achieve this work in a successful form.

The author is very thankful to the technicians of Soil Mechanics Laboratory, Faculty of Engineering, Ain Shams University, for their valuable help which have greatly contributed in presenting this work.

CONTENTS

ST	ATEMENT	· i
ΑB	STRACT	– ii
AC	CKNOWLEDGEMENT	iii
	CHAPTER 1 INTRODUCTION	1
1.1	Synopsis	- 1
1.2	Search Content	- 2
	CHAPTER 2 HISTORICAL REVIEW	- 4
2.1	Introduction	- 4
2.2	Liquefaction of granular soil	- 5
	2.2.1 Liquefaction and Shear Strength	- 5
	2.2.2 Mechanism of Liquefaction Sand Boils	- 8
2.3	Liquefaction, Initial Liquefaction, and Initial Liquefaction with	
	Limited Strain Potential	10
	2.3.1 Liquefaction	-11
	2.3.2 Initial Liquefaction	11
	2.3.3 Initial Liquefaction with Limited Strain Potential, Cyclic	
	Mobility, or Cyclic Liquefaction	11
2.4	Criterion of Liquefaction	12
	Factors Affecting Liquefaction and Settlement of Sand	
	2.5.1 Grain Size and Grading of Sand	
	2.5.2 Initial Relative Density	

2.5.3 Initial Intergranular Stress	16
2.5.4 Vibration Characteristics	17
2.5.5 Deposit Characteristics	17
2.5.6 Soil Structure	18
2.5.7 Period Under Sustained Load	18
2.5.8 Previous Strain History	19
2.5.9 Trapped Air	19
2.5.10 Degree of Saturation	20
2.6 Laboratory Tests and Equipment	20
2.6.1 Triaxial Shear	21
2.6.2 Oscillatory Simple Shear Test	23
2.6.3 Vibration Table	25
2.6.3.1 Test with Zero Surcharge	26
2.6.3.2 Test with Initial Surcharge	26
2.6.4 New Test Facility	27
2.6.4.1 Large Scale Cyclic Shear Bin	27
2.6.4.2 Centrifuge Apparatus	29
2.7 Blasting Test in Field	31
2.8 Liquefaction Potential	32
2.9 Soil Liquefaction Analysis Using In-Situe Propreties	39
2.9.1 From Standard Penetration Data	39
2.9.2 From Electrical Properties of Soil	42
2.10 Liquefaction Potential in the NILE VALLEY	44
2.11 Settlement (Densification) of Dry Sand	45
2 11 1 Settlement Estimation	46

2.11.2 Effects of Multi-Directional Shaking 48	
2-12 Search Programme 49	
Tables of Chapter 2 51	
Figures of Chapter 2 52	
CHAPTER 3 LABORATORY EQUIBMENTS AND SOIL	
TYPES 81	
3.1 Introduction 81	
3.2 Simple Shear Device 82	
3.3 Shaking (Vibration) Table 83	
3.3.1 Mechanism of Motion 84	
3.3.2 Soil Sample Container 85	
3.3.2.1 The Function of The Different Container Parts 86	
3.4 Soil Samples 88	
Tables of Chapter 3 89	
Figures of Chapter 3 91	
CHAPTER 4 SETTLEMENT (DENSIFICATION) OF DRY	
SANDS DURING CYCLIC LOADING 99	
4.1 Introduction 99	
4.2 Laboratory Test Programme 100	
4.2.1 Soil Samples 100	
4.2.2 Test Results 100	
4.3 Effect of Vertical Stress 101	
4.4 Test Results Analysis 102	

4.4.1 Results of Soil Type No.(1)	103
4.4.2 Results of Soil Type No. (2)	104
4.4.3 Results of Soil Type No. (3)	105
4.4.4 Comparison Between the Three Soil Samples	106
4.5 Comparison Between the Obtained Results and Previous	
Results	107
4.6 Fitting of The Laboratory Test Results	108
Tables of Chapter 4	112
Figures of Chapter 4	114
CHAPTER 5 LIQUEFACTION OF SAND	137
5.1 Introduction	137
5.2 Mechanism of Liquefaction	138
5.3 Laboratory Equipments	140
5.4 Laboratory Test Programme	140
5.4.1 Soil Samples	140
5.4.2 Test Results	140
5.5 Groups of Tests	142
5.5.1 Results of First Group of Tests	143
5.5.1.1 Results of Soil Type No.(1)	143
5.5.1.2 Results of Soil Type No. (3)	146
5.5.2 Results of Second Group of Tests	148
5.5.2.1 Test Results	149
5.5.3 Results of Third Group of Tests	150
5.5.3.1 Results of Soil Type No.(1)	151

5.5.3.2 Results of Soil Type No. (3)	153
5.5.4 Special Tests	154
5.5.4.1 Test No.(1)	154
5.5.4.2 Test No.(2)	155
Table of Chapter 5	157
Figures of Chapter 5	158
6.1 Synopsis	241
6.2 Conclusions	241
6.3 Recommendations for Future Researches	245
REFERENCES	246

LIST OF TABLES

Vo. Page
Relation between earthquake magnitude, and number
of significant stress cycles "Nc" 51
Relation between relative density, and correlation
factor "Cr" 51
Data from large- scale simple shear tests on freshly
deposited sand 51
Relation between frequency, periodic time, and angular
velocity for the four positions (speeds) of the shaking
table 89
Properties of the three soil samples 90
The maximum error percentage for the data fitting
using the two equations 112
Comparison between equation quoted from Martin,
1988 and the proposed third degree polynomial equation.
113
Relation between amplitude, angular velocity, and base
acceleration 157

LIST OF FIGURES

Figure	Figure No. Page		
(2-1)	Tilting of building during Niigata Earthquake, 1964 52		
(2-2)	Automobile sunk during Niigata Earthquake, 1964 52		
(2-3)	Sewage treatment tank which floated to surface during		
	Niigata Earthquake, 1964 53		
(2-4)	Failure of Shawa Bridge, Niggata Earthquake, 1964 53		
(2-5)	Tilting of Apartment building, Niggata Earthquake, 1967 -54		
(2-6)	Springs developing during Feb., 1971 San Fernando		
	Earthquake, 1976 54		
(2-7)	Ground cracking in zone of extensive liquefaction,		
	Guatemala Earthquake, 1976 55		
(2-8)	Sand boils at ground surface in zone of moderate		
	liquefaction 55		
(2-9)	Photograph of failed Sitake Highway, 1988 Arminea		
	Earthquake 56		
(2-10)	Photograph of Embankment at Railway, Marina District,		
	1989 Loma Prieta Earthquake 56		
(2-11)	Large sand boil covering Entire Backyard, Marina District,		
	1989 Loma Prieta Earthquake 57		
(2-12)	Typical example of buckling of sidewalk at Curb indicating		
	lateral compression displacement of ground, 1989 Loma		
	Prieta Earthquake 57		

(2-13)	Typical bearing capacity failure of building, 1990 Luzon
	Earthquake, Philippine 58
(2-14)	Settlement of ground surface due to liquefaction and soil
	densification, Dahshour Earthquake, near Cairo, Egypt, 1992
	59
(2-15)	Certain settlement of ground surface due to soil liquefaction
	and densification, Dahshour Earthquake, 1992 59
(2-16)	Slope failure at Nile sideshore, Dahshour Earthquake 60
(2-17)	Cracks due to earthquake at the surface clay deposit near the
	liquefied area, Dahshour Earthquake, 1992 60
(2-18)	Sand boils, Dahshour Earthquake, 1992 61
(2-19)	Large sand boils covering farm surface, Dahshour
	Earthquake, 1992 61
(2-20)	Photograph showing that liquefaction had taken place beside
	Bedsa Primary School, Dahshour Earthquake, 1992 62
(2-21)	Settlement of column inside Bedsa School due to differential
	settlement of foundations, Dahshour Earthquake, 1992 62
(2-22)	Tension failure in column inside Bedsa School, Dahshour
	Earthquake, 1992 63
(2-23)	Seperation between beam, and wall due to settlement,
	Dahshour Earthquake, 1992 63
(2-24)	Tilting of El-Shekh Metwaly Tower, Gerga, Upper Egypt,
	Dahshour Earthquake, 1992 64
(2-25)	Schematic diagram showing the pore water pressure due to
	earthquake shaking 65