

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

THE MECHANICAL BEHAVIOUR OF POLYMER-BASED MATERIALS AND

STRUCTURES

by

Eng. Nabila Shawky El-Nahas

M.Sc. in Mechanical Eng.

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering to Ain Shams University, Faculty of Engineering Department of Energy and Automotive Engineering

(Automotive)

128°

Supervised by

Prof.Dr.A.H.Bawady Ain Shams University Faculty of Engineering Energy and Auto. Eng. Dept

Prof. Dr. G.A. Verchery Ecole des Mines de St-Etienne Mechanical and Materials Dept. France

CAIRO 1992

Examiners Committee

Name. Title & Affiliation

- 1- Prof.Dr. Mohamed Moustafa El-Alaily Professor of Automotive Engineering Ain Shams University, Faculty of Engineering Energy & Automotive Engineering Department Egypt
- 2- Prof. Dr. Ignazio Crivelli Visconti Professor at the Naples University Italy
- 3- Prof. Dr. Ahmed Hassan Bawady
 Professor of Internal Combustion Engines
 Energy & Automotive Engineering Department
 Ain Shams University, Faculty of Engineering
 Egypt

had the

External oxaminer
Report attack of

A. Bawadu

Egypt

Date: // 1992

STATEMENT

This dissertation is submitted to Ain Shams University for the Degree of Doctor of

Philosophy in Mechanical Engineering.

The work included in this thesis was carried out by the authoress at the Mechanical

and Materials Department, Ecole des Mines de Saint-Etienne, France and at the

Department of Energy and Automotive Engineering, Ain Sams University . Egypt, from

December 1988 to March 1992

No part of this thesis has been submitted for a degree or a qualification at any

other University or Institution

Date : 1-3-1992

Signature: Kali Name : Nabila Shawky El-Nahas

DEDICATION

I would like to dedicate this work to my husband and parents, who without their continuous support and patience, this thesis could not have been accomplished, and to my children hoping that one day they would understand and forgive my absence.

ACKNOWLEDGEMENT

The authoress wishes to express her deep gratitude to her supervising professor Prof.DR. G.Verchery for giving her the opportunity of working in his laboratory and for providing the means for financing the experimental part.

She also wishes to acknowledge her supervisor Prof.Dr.A.Bawady for his guidance and continuous encouragement.

She is also indebted to her colleague Mr.F.Soulas with whom she worked as a team during part of this work and who aided her particularly in the visits to different companies.

She also wishes to thank the members of the workshop at the Ecole des Mines de Saint Etienne, especially Mr. R.Delabre, for fabricating the different parts with high precision and in a very short time.

Thanks are specially due to Prof.Dr.Vautrin, for spending some of his time in several discussions and for all the members of the Department of Mechanics and Materials for their encouragement during the achievement of this work.

CONTENTS

Nomenclature	i
ABSTRACT	1
CHAPTER 1: INTRODUCTION AND REVIEW OF PREVIOUS WORK	
1.1. INTRODUCTION	3
1.2. HISTORICAL BACKGROUND	4
1.3. APPLICATIONS OF COMPOSITE MATERIALS IN	
ENGINEERING	5
1.3.1. APPLICATIONS IN AUTOMOTIVE INDUSTRY	5
1.3.2. APPLICATIONS IN POWER ENGINEERING	6
1.3.3. APPLICATIONS IN THE AEROSPACE INDUSTRY	7
1.3.4. APPLICATIONS IN MILITARY INDUSTRIES	
1.4. FUTURE PROSPECTS	8
1.5. REVIEW OF THE PREVIOUS WORK	8
1.6. AIM OF THE PRESENT WORK	11
CHAPTER 2: ANALYSIS OF STRUCTURES MADE OF COMPOSITE MATERIALS	
2.1. INTRODUCTION	13
2.2. The MIC-MAC PROGRAM	13
2.3. PROGRAM FEATURES	14
2.4. MIC-MAC VESSEL	14
2.4.1. VESSEL MADE OF T300/5208	16
2.4.1.1.Effect of pressure	16
2.4.1.2. Effect of loads	17
2.4.1.3. Effect of torque	17
2.4.1.4. Effect of the simultaneous application	
of pressure and force	18
2.4.1.5. Effect of the simultaneous application	

of pressure and torque	19
2.4.1.6. Effect of the simultaneous application	
of pressure, force and torque	19
2.4.1.7. Multi-layered carbon vessel	20
2.4.2. VESSEL MADE OF Scotch/Ep	22
2.4.2.1.Effect of pressure	22
2.4.2.2. Effect of force	22
2.4.2.3. Effect of torque	23
2.4.2.4. Effect of pressure and torque	24
2.4.2.5. Effect of pressure and force	24
2.4.2.6. Effect of pressure, force and torque	25
2.4.2.7. Multi-layered glass vessel	26
2.4.3. Comparison between equal sized vessels	28
2.5. ANALYSIS OF THICK STRUCTURES	29
2.5.1. BASIC ASSUMPTIONS	30
2.5.2. FORMULATION OF THE PROBLEM	32
2.5.3. AXIAL STRESS ANALYSIS	35
2.5.4. RADIAL STRESS ANALYSIS	37
2.5.5. HOOP ANALYSIS	37
2.5.6. CALCULATION OF THE STRENGTH RATIO	38
2.5.7. MULTI-LAYERED PRESSURE VESSELS	39
2.6. CONCLUSION	41
CHAPTER 3: METHODS AND TECHNOLOGIES OF MANUFACTURING COMPOSITE MATERIALS	
3.1. INTRODUCTION	42
3.2. METHODS OF MANUFACTURING COMPOSITE	
MATERIALS	42
3.2.1. THE ARTISANAL METHODS	42
3.2.1.1. Contact moulding	42
3.2.1.2. Simultaneous projection moulding	42
3.2.2. MIDDLE SERIES METHODS	42
3.2.2.1. Moulding at a low pressure	45
3.2.2.2. Resin injection moulding	45

3.2.2.3. Vacuum moulding	45
3.2.3. LARGE SERIES METHODS	45
3.2.4. CONTINUOUS METHODS	47
3.2.4.1. Plates and profiles	47
3.2.4.2. Pultrusion	47
3.2.5. MANUFACTURING OF HOLLOW BODIES	47
3.2.5.1. Moulding by centrifuging	47
3.2.5.2. Moulding by winding	47
3.3. CRITERIA FOR CHOOSING A CERTAIN MOULDING	
METHOD	50
3.3.1. Technical criteria	50
3.3.2. Economic criteria	50
3.3.3. Human criteria	50
3.4. DEFECTS LIABLE TO OCCUR DURING THE	
MANUFACTURING PROCESS	50
3.5. CHOICE OF A SUITABLE MANUFACTURING	
METHOD FOR PRODUCING PRESSURE VESSELS	51
3.6. FILAMENT WINDING	52
3.6.1. A HISTORY OF THE FILAMENT WINDING MACHINE	
CONTROL	52
3.3.2. THE FILAMENT WINDING PROCESS	53
3.6.3. TYPES OF FILAMENT WINDING	55
3.6.3.1. Circumferential or hoop winding	55
3.6.3.2. Helical winding	55
3.6.3.3. Polar winding	55
3.6.3.4. Oscillating mandrel type winding	58
3.6.4. KINDS OF MANDRELS	58
3.6.4.1. Water soluble sand mandrels	58
3.6.4.2. Spider/plaster mandrels	58
3.6.4.3. Segmented collapsible mandrels	58
3.6.4.4. Tube mandrels	58
3.6.5. FIBER TENSIONING	58
3.6.6. FIBER IMPREGNATION	59
3.6.6.1. Methods for impregnating the fiber bands	59
3.6.6.2. Role of the resin system	60
3.6.6.3 Methods of application of resins in the filament	
winding process	60
3.6.6.4. Comparison of filament winding impregnation	

methods	61
3.6.7. LINEAR AND NON-LINEAR WINDING	61
3.6.8. TEACH-IN METHOD	62
3.6.9. COVERAGE OF MANDRELS FOR AXI-SYNMMETRIC	
AND NON-AXISYMMETRIC WINDING	62
3.6.10. GEODESIC AND NON-GEODESIC WINDING	62
3.6.11. FRICTION COEFFICIENT	62
3.6.12. ADVANTAGES OF FILAMENT WINDING	64
3.6.13. DISADVANTAGES OF FILAMENT WINDING	64
3.6.14. METHODS OF OVERCOMING THE PREVIOUS	
DISADVANTAGES	64
3.6.15. FILAMENT WINDING APPLICATIONS	64
3.6.16. EXAMPLES OF SOFTWARES USED IN THE COMPUTER	
CONTROLLED WINDING MACHINES	65
3.6.16.1. The CADMAC process	65
3.6.16.2. CADFIL	66
3.6.16.3. AX-FIL	67
3.6.16.4. BAER software	68
3.7. CONCLUSION	68
CHAPTER 4: CONSTRUCTION OF A PROTOTYPE FILAMENT WINDING MACHINE	
4.1 INTRODUCTION	
4.1. INTRODUCTION	70
4.2. A MULTI-AXES FILAMENT WINDING MACHINE	70
4.2.1. MANDREL ROTATION	70
4.2.2. LONGITUDINAL MOTION	70
4.2.3. TRANSVERSE MOTION	70
4.2.4. VERTICAL MOTION	71
4.2.5. FEED-EYE ROTATION	71
4.3. STUDY OF SOME EXISTING MACHINES AVAILABLE	
IN THE FRENCH MARKET	72
4.3.1. EXAMPLES OF SOME MACHINES	72
4.3.1.1. Pultrex machines	72
4.3.1.2. Forplex machines	73
4.3.1.3. BMO machines	73

4.3.2. COMPARISON BETWEEN THE MACHINES	77
4.4. CONSTRUCTION OF A PROTOTYPE FILAMENT	
WINDING MACHINE	79
4.4.1. CHOICE OF MACHINE CONFIGURATION	79
4.4.2. CHOICE OF THE NUMBER OF FIBERS	80
4.4.3. CHOICE PF THE NUMBER OF AXES	80
4.4.4. CHOICE OF THE LOCATION OF THE FIBER	
TENSIONING DEVICE	80
4.4.5. CHOICE OF THE TYPE OF MOTOR	80
4.4.5.1. SIREM	80
4.4.5.2. LEROY SOMER	82
4.4.5.3. SOCITEC	82
4.4.5.4. ALSTHOM PARVEX	82
4.4.6. CHOICE OF A SUITABLE CARRIAGE	83
4.4.6.1. Table WORM origin SKF	83
4.4.6.2. WIESEL unit origin INA	83
4.4.6.3. Carriage ALME origin STAR	83
4.4.4. CHOICE OF THE CAPACITY OF THE DIFFERENT	
MOTORS	86
4.4.7.1. Mandrel motor	86
4.4.7.2. Carriage motors	87
4.4.8. CHOICE OF COMPUTER CONTROLS	91
4.4.9. CHOICE OF THE CONTROL SYSTEM	91
4.5. MAIN FEATURES OF THE MACHINE	92
4.5.1. MANDREL GROUP	92
4.5.2. FRAME	93
4.5.3. CARRIAGE GROUP	93
4.5.4. FIBER TENSIONING	94
4.5.5. MACHINE CONTROL UNIT	95
4.6. POSSIBLE MODIFICATIONS THAT COULD BE	
DONE ON THE MACHINE	97
4.7. TECHNICAL SPECIFICATIONS OF THE PROTOTYPE	
MACHINE	97
4.8. CONCLUSION	99

CHAPTER 5: MANIPULATING THE MACHINE

5.1. INTRODUCTION	100
5.2. THE CYBER 3000	100
5.2.1. THE RACK	100
5.2.2. THE CONSOLE	100
5.2.3. THE TECHNICAL CHARACTERISTICS	102
5.3. THE KEYBOARD	103
5.3.1. THE FUNCTION KEYS	103
5.3.2. NUMERICAL KEYS	103
5.3.3. MODE KEYS	103
5.3.3.1. Machine referencing (POM)	103
5.3.3.2. The search mode	105
5.3.3.3. Manual mode	105
5.3.3.4. Direction keys	105
5.3.3.5. AUTO (AUTOMATIC) mode	105
5.3.3.6. BLOCK/BLOCK mode	105
5.3.3.7. Manual data insertion (MDI) mode	105
5.3.3.8. The loading and downloading modes	106
5.3.3.9. RAZ (ZERO RESET) mode	106
5.3.3.10. The modification mode	106
5.3.3.11. The speed attenuator keys	106
5.3.3.12. The Cycle START and Cycle STOP keys	106
5.3.4. POINTER SHIFT AND DISPLAY KEYS	106
5.3.4.1. Pointer shift keys	106
5.3.4.2. Display keys	106
5.4. THE INSTALLATION OF THE MACHINE	107
5.4.1. SETTING UP THE MACHINE CONSTANTS	107
5.4.2. DESCRIPTION OF SOME MACHINE CONSTANTS	107
5.5. OPERATIONS DONE ON THE MACHINE	109
5.5.1. MANUAL DISPLACEMENT OF AXES	109
5.5.2. MANUAL INTRODUCTION OF DATA	109
5.5.3. WRITING A PROGRAM	109
5.5.4. SEARCHING FOR AN EXISTING PROGRAM	110
5.5.4.1. Search for a program with a certain number	110
5.5.4.2. Search for a program existing in the memory	110
5.5.4.3. Search for the first program in the memory	110
5.5.4.4. Search for the following programs	111

FFF MODULATION ADDOCTOR	
5.5.5. MODIFYING A PROGRAM	117
5.5.5.1. Inserting a block	113
5.5.5.2. Deleting a block	113
5.5.5.3. Modifying a block	111
5.5.5.4. Erasing a block	112
5.5.5.5. Erasing all programs	112
5.5.6. SAVING OF PROGRAMS AND MACHINE CONSTANTS	112
5.5.7. LOADING OF PROGRAMS	113
5.6. THE INTERFACE BETWEEN THE NC AND THE	
MACHINE	113
5.7. PRODUCTION OF STRUCTURES	114
5.8. CONCLUSION	115
CONCLUSIONS AND FUTURE PROSPECTS	116
CONCLUSIONS AND FUTURE I RUSI ECTS	110
REFERNCES	120
REFERNCES APPENDIX (A): THE MECHANICAL BEHAVIOR OF COMPOSITE	120
	120 127
APPENDIX (A): THE MECHANICAL BEHAVIOR OF COMPOSITE	
APPENDIX (A): THE MECHANICAL BEHAVIOR OF COMPOSITE STRUCTURES	127
APPENDIX (A): THE MECHANICAL BEHAVIOR OF COMPOSITE STRUCTURES APPENDIX (B): CALCULATION OF THE COMPLIANCE MATRIX	127
APPENDIX (A): THE MECHANICAL BEHAVIOR OF COMPOSITE STRUCTURES APPENDIX (B): CALCULATION OF THE COMPLIANCE MATRIX APPENDIX (C): PRICE AND DELAY OF DELIVERY OF THE	127 137
APPENDIX (A): THE MECHANICAL BEHAVIOR OF COMPOSITE STRUCTURES APPENDIX (B): CALCULATION OF THE COMPLIANCE MATRIX APPENDIX (C): PRICE AND DELAY OF DELIVERY OF THE DIFFERENT PARTS	127 137 141
APPENDIX (A): THE MECHANICAL BEHAVIOR OF COMPOSITE STRUCTURES APPENDIX (B): CALCULATION OF THE COMPLIANCE MATRIX APPENDIX (C): PRICE AND DELAY OF DELIVERY OF THE DIFFERENT PARTS APPENDIX (D): NUMERIC CONTROL OF MACHINES	127 137 141 142
APPENDIX (A): THE MECHANICAL BEHAVIOR OF COMPOSITE STRUCTURES APPENDIX (B): CALCULATION OF THE COMPLIANCE MATRIX APPENDIX (C): PRICE AND DELAY OF DELIVERY OF THE DIFFERENT PARTS APPENDIX (D): NUMERIC CONTROL OF MACHINES APPENDIX (E): PARTS USED IN THE ASSEMBLY	127 137 141 142 153
APPENDIX (A): THE MECHANICAL BEHAVIOR OF COMPOSITE STRUCTURES APPENDIX (B): CALCULATION OF THE COMPLIANCE MATRIX APPENDIX (C): PRICE AND DELAY OF DELIVERY OF THE DIFFERENT PARTS APPENDIX (D): NUMERIC CONTROL OF MACHINES APPENDIX (E): PARTS USED IN THE ASSEMBLY APPENDIX (F): ELECTRICAL CONNECTIONS	127 137 141 142 153 157
APPENDIX (A): THE MECHANICAL BEHAVIOR OF COMPOSITE STRUCTURES APPENDIX (B): CALCULATION OF THE COMPLIANCE MATRIX APPENDIX (C): PRICE AND DELAY OF DELIVERY OF THE DIFFERENT PARTS APPENDIX (D): NUMERIC CONTROL OF MACHINES APPENDIX (E): PARTS USED IN THE ASSEMBLY APPENDIX (F): ELECTRICAL CONNECTIONS APPENDIX (G): THE ISO CODE	127 137 141 142 153 157 161

ARABIC SUMMARY

NOMENCLATURE

Symbol	Significance	Unit
a	inner radius of cylinder	[m]
ь	outer radius of cylinder	[m]
С	suffness	[GPa]
Е	Young s Modulus	[GPa]
G	shear Modulus	[GPa]
h	laminate thickness	[m]
Pb	burst pressure	[MPa]
Q	stiffness	[Gpa]
q(i)	internal pressure	[MPa]
q·e:	external pressure	[MPa]
R	strength ratio	
S	longitudinal shear strength	[GPa]
Vf	volume fraction of fiber	~**
Vm	volume fraction of matrix	
X	longitudinal tensile strength	[GPa]
X '	longitudinal compressive strength	[GPa]
Y	transverse tensile strength	[GPa]

Y'	transverse compressive strength	[GPa]
ε	strain	
ν	Poisson's ratio	
ρ	specific density	[kg/m3]
σ	stress	[MPA]
O r	radial sress	[MPa[
σθ	hoop stress	[MPa]
σz	axial stress	[MPa]
f	index for fiber properties	
m	index for matrix properties	
z,θ.r	cylindrical coordinates	
1,2,3,4,5.6	off-axis coordinates	
x.y.z.t.u.s	on-axis coordinates	