EFFECT OF DIFFERENT METHODS OF CONTRACEPTION ON THE BACTERIAL FLORA OF THE FEMALE GENITAL TRACT

Essay

Submitted For The Partial Fulfilment of Master Degree In Clinical Pathology

By
ZEINAB ABDEL RAHMAN REFAI
M.B.; B. Ch.

616:07521 1. A

Supervised by

Prof. Dr. RAGAA MAHMOUD LASHEEN
Professor of Clinical Pathology
Faculty of Medicine
Ain Shams University

Ass. Prof. Dr. IBRAHIM KHALIL ALI
Assistant Prof. of Clinical Pathology
Faculty of Medicine
Ain Shams University

CLINICAL PATHOLOGY DEPARTMENT
FACULTY OF MEDIDINE
AIN SHAMS UNIVERSITY
1988

ACKNOWLEDGEMENT

I wish to express my deep thanks and gratitude to Professor Dr. RAGAA MAHMOUD LASHEEN Professor of Clinical Pathology Department Ain Shams University for giving me expert guidance, encourgement and support.

I'm realy indepted to Professor Dr. IBRAHIM KHALIL ALI Assistant Professor of Clinical Pathology Department Ain Shams University for his advice, valuable supervision and help.

I am sincerely grateful to Dr. FATMA EL ZAHARAA HASSAN BAHGAT The Lecturer of Clinical Pathology Department. Ain Shams University for her great help and supervision.

CONTENTS

	Introduction	Page
	Classification of different Methods of contracep-	1
	tion	4
	Normal flora of the female genital tract	
	Intrauterine contraceptive devices (IUD)	6
	Effect of IUD on the bacterial flora of female	20
	genital tract	2.1
• •	Relation of IUD to pelvic infection	21
• •	Pathogenesis of pelvic infection associated	30
	IUD	35
	Microbiology of pelvic infection with IUD	36
• •	Relation between IUD use and actinomycosis	39
	Relation of IUD to gonococcal infection	48
• •	Relation of IUD to vaginal candidiasis	50
• •	Relation of IUD to chlamydial infection	52
• •	Histopathological changes of the female genital	52
	tract due to IUD	E 4
• •	Oral contraceptives	54 59
• •	Effect of hormonal contraceptive on the flora	23
	of female genital tract	59
• •	Relation of oral contraceptive to pelvic infec-	23
	tion	66
• •	Relation or oral contraceptive of vaginal candi-	00
	diasis	69
•	Relation of oral contraception of urinary trats	09
	infection	72
•	Histopathological changes due to oral contrac-	12
	eptives	74
•	Local contraceptives	78
•	Effect of local contraceptives on vaginal flora	79
•	Relation of Mechanical barriers to infection.	83
	SUMMRY	90
•	REFERENCES	94
_	ARARIC SHMMADV.	J 4

INTRODUCTION

INTRODUCTION

The control of over population can be achieved by proper family planning programs mainly by the different methods of contraception as hormonal contraceptive pills, intrauterine contraceptive device, barrier methods as condom, diaphram and sponge as well as spermicides for example creams and vaginal suppositories.

Many comparative studies have been done to compare the different types of flora that dominate in the Female genital tract in association with the various methods of contraception and it was found that the occurrance of anaerobic bacteria in the cervix in women using intrauterine device and oral contraceptives was significantly more common than in women using barrier contraception. The latter technique especially the condom protects against this anaerobic shift and so it maintains the lactobacilli which are the normal flora of the female genital tract.

It was found also that women using intrauterine device had significantly more anaerobic gram positive cocci while those using diaphragm had significantly more aerobic gram negative bacilli (E.coli).

One of the most important side effects of contraception is infection of genital tract as well as urinary tract infection.

Some authors found high incidence of candida albicans in women using oral contraceptive pills. While those using intrauterine device show high incidence of vaginal trichomoniasis and actinomycosis.

Other workers found that the sponge method protect against the two most common sexually transmitted pathogens which are chalmydial, gonorrheal infections. There is higher incidence of vaginal colonization with Escherichia coli as well as urinary tract infection in women using diaphragm as a barrier method of contraception.

As regards histopathological changes of the female genit al tract, studies of the cytologic changes in the cervical smears of women using IUD, showed greater amount of leucocytes and multi nucleated giant histiocytes which represent a foreign body reaction. But there was no association between IUD use and increased

risk of cervical or endometrial neoplasia either benign or malignant. It was reported that using oral contraceptive pills for prolonged period increased the risk of endometrial and breast carcinoma while protect against ovarian tumours.

Classification of different methods of contraception can be summarised as follows: (Loudon N. 1985) (74).

- I. Hormonal contraception.
 - 1. combined oral contraceptive pills.
 - 2. Progesterone only pills.
 - 3. Injectable contraceptives.
- II. Intrauterine contraceptive device(IUD).
- III. Barrier methods :
 - 1. Diaphragm
 - 2. Carvical cap.
 - 3. Vault cap.
 - 4. Condoms
 - 5. Contraceptive sponge.
- IV. Spermicides
 - 1. Cereams and jellies
 - 2. Vaginal suppositories
 - 3. Foaming tablets
 - 4. Aerosol foams
 - 5. C-films.
- V. Natural family planning:
 - 1. Calendar method.

- 2. Basal body temprature.
- 3. Ovulation method
- 4. Symptothermal method.

VI. Methods related to sexual act:

- 1. Coitus interruptus.
- 2. Coitus reservatus.

VII. Lactation.

VIII.Sterilization:

- 1. Male.
- 2. Female.

One of the major factors that influences the usage of each method of contraception is its side effects and complications. (Haukkamaa et al., 1986) (50). This essay will study the changes of flora of the female genital tract and pelvic infection associated with the most prevalent methods which are intrauterine device (IUD), oral contraceptive pills, barrier methods and spermicides. This will be attained by discussing the pathogenesis of the alternation of flora of female genital tract with each method as well as the pathogenesis of infection occurring with that methods of contraception.

NORMAL FLORA OF THE FEMALE GENITAL TRACT

NORMAL FLORA OF THE FEMALE GENITAL TRACT

Normal bacterial flora of the vagina and cerivx

Normal bacterial flora of the female genital tract has been the field of many researches for along time Slotnick et al. (1963) (110) studied this flora in the university of florida, they reported Doderlien's bacillus as being the predominant organism in the normal status of the cervico-vaginal flora. In another study bacterial cultures were obtained from the cervix in 30 healthy women by al., (1973)⁽⁴⁴⁾, obligate anaerobes Gorbach were isolated from 21 specimens (70%) in combination with aerobic and facultative anaerobic bacteria. Aerobic organisms alone were detected in 8 specimens (27%) and only one specimen was sterile (3%), polymicrobial growth was found in all positive cultures. The most common anaerobes were Bacteroides isolated from 57% of the women examined. This was followed by peptostreptococci (anaerobic streptococci) and veillonella species. These anaerobic flora were

also frequently involved in pelvic infection suggesting that they were potentially pathogenic. Details concerned in individual organisms and their numbers in positive cultures could be clarified by the following tables:

Table (1): Aerobic and facultative anaerobic orgaanisms isolated from cervix of 30 healthy women.

Organism	N.of posi- tive cul- tures.	% of pos- itive cultures
l. Lactobacilli	22	73%
2. Staphylococcus epidermidis	17	57%
3. Streptococcus species	16	53%
4. Candida species	8	27%
5. Escherichia coli	6	20%
5. Neisseria species	4	13%
7. Proteus mirabilis	3	10%
3. Alka ligenes faecalis	1	3 %

Quoted Gorbach et al.(1973)

Table (2): Strict anaerobic micro-organisms isolated from cervix of 30 healthy women.

	Organism	N.of posi- tive culture	% of pos- itive culture
l.	Bacteroides oralis	6 1	
2.	Bacteroides fragilis	5	
3.	Bacteroides capillosus	3	57%
4.	Bacteroides species	2	
5.	Bacteroides clostridiforms	1	
6.	Peptostreptococcus	10	33%
7.	Veillonella	8	27%
8.	Clostridium bifermentans	2 1	
9.	Clostridium dificile	1	17%
10.	Clostridium ramosum	1	
11.	Clostridium perfringens	1	
12.	Bifidobacterium	3	10%
13.	Peptococcus	2	78
14.	Eubacterium	1	3%

Quoted Gorbach et $al(1973)^{(125)}$.

Swenson et al (1973) (125) studied the anaerobic flora of the normal vagina. They reported that the anaerobic gram positive cocci (e.g. peptococci, peptostreptococcus anaerobius) were the most common anaerobic flora followed by anaerobic gram positive (e.g. lactobacilli, clostridium species and Eubacterium species). Then anaerobic gram negative Bacteroides and Fusobacterium rods species. They found a low percentage of gram negative cocci (e.g. veillonella parvula and veillonella alcalescens). As regards the aerobic organisms only staphylococcus epidermidis were found. The previous study was followed by that of Marilyn et al(1975) (76), they examined aerobic and anaerobic bacteria the normal flora of the genital tract of 100 women prior to hysterectomy for menorrhagia (benign causes) They used modified sturart's transport media for transporting the samples and cultured the specimens both aerobically and anaerobically. They used blood and chocolate agar plates containing vit.K and hemin for anaerobic cultures. The results have shown that all of the 100 cultures were positive for growth. Both aerobic and anaerobic organisms