

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

MONITORING OF BUILDINGS STRUCTURES IN MADINAH

\mathbf{BY}

TAREK MOHAMADS SALEEM ALGUHANE

B.Sc. STRUCTURAL ENGINEERING 1993 M.Sc. STRUCTURAL ENGINEERING 2003 CIVIL ENGINEERING DEPARTMENT AIN SHAMS UNIVERSITY

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT FOR THE
REQUIREMENTS OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN CIVIL
ENGINEERING (STRUCTURAL)

SUPERVISED BY

Prof. Dr. Ayman Hussein Hosny Khalil

Dr. Khalid Mohamed Hilal Raid

Professor of RC Structures
Ain Shams University

Associate Professor of Structural Engineering
Ain Shams University

EXAMINERS COMMITTEE

NA	ME, TITLE & AFFILIATION	SIGNATURE
1.	Prof. Dr. Ashraf Hasan El-Zanati Professor of Reinforced Concrete Structures Faculty of Engineering Cairo University	
2.	Prof. Dr. Ahmed Hasan Ghallab Professor of Reinforced Concrete Structures Faculty of Engineering Ain Shams University	
3.	Prof. Dr. Ayman Hussein Khalil Professor of Reinforced Concrete Structures Faculty of Engineering Ain Shams University	
4.	Dr. Khalid Mohamed Hilal Raid Associate Professor of Structural Engineering Faculty of Engineering Ain Shams University	

Date: 13 /10/2014

INFORMATION ABOUT THE RESEARCHER

Name:	Tarek Mohamads Saleem Alguhane			
Birth:	Tabuk ,Saudi Arabia, 22 October 1970			
Degree:	Bachelor of Science in Civil Engineering, Structural			
	Section Faculty of Engineering – King Suadi University –			
	June 1993			
	Master of Science in Civil Engineering, Structural Section			
	Faculty of Engineering - King Suadi University - June			
	2003			
Current Job: Project Manager, Al Madinah Regional Municipality				
	Signature:			
	Date: 13/10/2014			

STATEMENT

This thesis is submitted to Faculty of Engineering - Ain Shams University for the Degree of **Ph.D. of Science** in Civil Engineering (Structural Engineering Department).

The work included in this thesis was carried out by the author in the department of Civil Engineering (Structural Section), Ain Shams University from 2010 to 2014.

No part of this thesis has been submitted for degree or a qualification to any other University or Institution.

Date	:	13 /	′ 10 <i>i</i>	/ 2014

Name : Tarek Mohamads Saleem Alguhane

Signature : _____

ACKNOWLEDGEMENT

First of all, I would like to express my appreciation to all my professors and superiors who taught me and guided me along my whole educational and career life.

I do present my deepest gratitude to **Prof. Dr**. Ayman Hussein, Professor of Reinforced concrete pstructures, Faculty of Engineering, Ain Shams University for his valuable suggestions, support, guidance and supervision throughout the research.

Appreciation is extended in order to thank **Dr. Khaled Hilal Riad** Associate Professor of Structural Engineering, for helpful assistance throughout of this work.

Deep appreciation is extended in order to thank **Prof. Dr. Mohammed Nour Fayed** and **Prof. Dr. Ayman Ismail** Professors of Structural Engineering, for their support, fruitful suggestion, and helpful assistance throughout all phases of this work.

I would like to express my deepest gratitude for my parent's love, who have always been on my side, encouraging me, supporting my decisions and embracing my dreams. Words stand helpless and cannot express my appreciation to my family.

I would also like to thank my wife who has always been there for me, in both good and difficult times. Her continuous support, encouragement and help me have given me the strength and energy to achieve my goals.

Name: Tarek Mohamads Alguhane

Title: Monitoring of Buildings Structures in Madinah

Ph.D. of Science dissertation, Ain Shams University, Faculty of Engineering, Structural Engineering Department - 2014

ABSTRACT

The present thesis deals with the monitoring of buildings structures in Madinah of Saudi Arabia through field ambient vibration tests. The work done includes an extensive survey on the empirical relationship for estimating the fundamental period of RC building, determination of the dynamic characteristic of existing building through field tests measurement, different techniques to simulate infill walls in seismic analysis. Detailed review is given for earthquake Seismology in Saudi Arabia, including tectonics of the Arabian Plate, earthquake map, sites seismic monitoring stations and Earthquake Risk.

Field ambient vibration tests have been carried out for 32 RC buildings in the Madinah of Saudi Arabia in order to determine their dynamic characteristic, i e. frequencies and mode shapes. For each tested building, general information about its geometry and the measured modal parameters corresponding to the first three modes of vibration has been illustrated in plots and tables. From these modal parameters data, expressions for the fundamental period of typical RC buildings in Madinah region have been proposed.

The basic important algorithms for nonlinear pushover analysis methods have been described. These methods include the Coefficient Method of Displacement, the Coefficient Method of Displacement Modification, Capacity-Spectrum Method of Equivalent Linearization, and Improved Capacity-Spectrum Method of Equivalent Linearization. Different techniques to simulate infill walls have been studied through comparative example for single storey RC frame. From the results of pushover and dynamic characteristics analysis, modified equation for modeling of infill of RC building as equivalent link member has been proposed.

Further, two existing RC buildings in Madinah have been seismically evaluated with and without infill wall and their dynamic characteristic are compared with measured values in the field. After, updated the mathematical

models for these two building with the experimental results, 3D pushover analysis has been carried out using a commercial software incorporating inelastic material behavior for concrete, infill and steel. The hinge status at target displacement, capacity diagram, demand diagram, ductility reduction factor, and structural over-strength for these buildings are determined and compared with seismic code requirements. The effect of changing the brick clad wall compressive strength values on the overall performance of a structural system, strength and deformation demands in design has been investigated. Summary, conclusions and important recommendations for future extension of the research work done within the thesis are presented.

Keywords: pushover analysis, infill walls, RC buildings, madinah, dynamic characteristic

Table of Contents

	page
Acknowledgments	V
Abstract	vi
List of Contents	vii
List of Tables	xii
List of Figures	xvi
Chapter 1: INTRODUCTION	
1.1 BACKGROUND	1
1.2 PROBLEM DEFINITION	3
1.3 RESEARCH OBJECT	
1.4 OUTLINEE OF THESIS	
Chapter 2: LITERATURE REVIEW	
2.1 INTRODUCTION	8
2.2 ESTIMATION OF THE PERIOD OF VIBRATION OF EXISTING RC	
BUILDING TYPES THROUGHT FIELD MEASUREMENTS	9
2.3 EMPIRICAL EXPRESSION FOR THE EVALUATION OF	
FUNDAMENTAL PERIOD	11
2.3.1 The model formula introduced by different seismic codes	11
2.3.2 The model formula introduced by different researchers	14
2.3.3 The model formula considering of flexibility of rigid soil.	20
	20
2.4 MODELING OF MASONARY INFILL RC FRAMES	22
2.4.1 General	22
2.4.2 Failure modes of masonry in-filled RC frames	23

25
26
27
28
28
32
35
35
36
37
40
70
41
43
44
44
45
49
50
51
51 52
52
52
52 54
52 54 56

structures

3.4 NATURAL PERIOD ESTIMATIONS IN SAUDI CODES	
3.4.1 Model formula introduced by seismic codes in KSA	
3.4.2 Approximate Fundamental Period	65
3.5 METHODS OF ANALYSIS FOR EVALUATION OF	SEISMIC 66
PERFORMANCE	
3.5.1 Elastic method of analysis	67
3.5.1.1 Seismic coefficient method	67
3.5.1.2 Linear elastic dynamic analysis	67
3.5.2 Inelastic method of analysis	67
3.5.2.1 Inelastic time history analysis or nonlinear responses	onse history 67
3.5.2.2 Inelastic static analysis or pushover analysis	68
CONCRETE BUILDINGS THROUGH IN SI MEASUREMENTS	110
4.1 GENERAL	69
4.2 DYNAMIC MEASUREMENT SYSTEM	69
4.3 DATA PROCESSING TECHNIQUES FOR AMBIENT V RECORD	VIBRATION 71
4.4 MODAL ANALYSIS	72
4.5 EXPERIMENTAL WORK	76
4.5.1 Test Planing	77
4.5.2 Data analysis	78
4.5.2.1 Data pre-processing	78
4.5.2.2 Modal and Frequency analyses	79
4.5.3 Characterisation of structural layout of the RC build analysis	dings under 79
4.6 EVALUATION OF THE EXISTING FORMULAS IN BUILDING CODES WITH FIELD DATA	CURRENT 83
	83

4.7 IMPROVED EXPRESSION TO ESTIMATE THE FUNDAMENTAL	89
PERIOD OF RC INFILL MOMENT-RESISTING FRAME AND	
MOMENT-RESISTING FRAME WITH SHEAR WALL SYSTEM	
4.7.1 Regression analysis method	89
4.8 DETAIL CHARACTERISATION OF STRUCTURAL LAYOUT OF THE	
RC BUILDINGS UNDER ANALYSIS	99
Chapter 5: PUSHOVER ANALYSIS METHODS AND MODELING	
OFBUILDING ELEMENTS	
5.1 INTRODUCTION	188
5.2 EARTHQUAKE GROUND MOTION AND PERFORMANCE CRITERIA	189
5.2.1 Earthquake Ground Motion	189
5.2.2 Performance Criteria	190
5.3 OBJECT OF THE PUSHOVER ANALYSIS	193
5.4 PUSHOVER ANALYSIS METHODS	195
5.4.1 The Coefficient Method of Displacement in FEMA356	195
5.4.2 The Coefficient Method of Displacement Modification in FEMA-440	199
5.4.3 Capacity-Spectrum Method of Equivalent Linearization in ATC40	202
5.4.4 Capacity-Spectrum Method of Equivalent Linearization in FEMA 440	211
5.5 RESPONSE MODIFICATION FACTOR	216
5.5.1 Ductility Reduction Factor (Rμ)	219
5.5.2 Structural Over-strength (Ω)	221
5.6 NONLINEAR MODELING OF BUILDING ELEMENTS FOR PUSHOVER	
ANALYSIS	222
5.6.1 Nonlinear Modeling of RC Beam-Column Frame	222
5.6.2 Nonlinear Modeling of Shear Wall	227
5.6.3 Nonlinear Modeling of Masonry Infill	228
5.7 COMPARATIVE EXAMPLE	229

Chapter 6: SEISMIC EVALUATION OF TWO RC BUILDINGS IN MADINA USING PUSHOVER ANALYSIS

6.1 INTRODUCTION	245
6.2 KEY ELEMENTS OF PUSHOVER ANALYSIS USING	
SAP2000 PROGRAM	246
6.2.1 Loading and Load Application Control	247
6.2.2 Frame Hinge Properties	247
6.2.3 Hinge Unloading Method	249
6.3 FIVE-STORY RC BUILDING	251
6.3.1 Introduction	251
6.3.2 Scope of Models	257
6.3.3 Model Assumptions	257
6.3.4 Mathematical Model	257
6.3.5 Cases of Study	259
6.3.6 Results and discussions	260
6.4 FIFTEEN-STORY RC BUILDING	315
6.4.1 Introduction	315
6.4.2 Scope of Models	321
6.4.3 Model Assumptions	321
6.4.4 Mathematical Model	322
6.4.5 Cases of Study	324
6.4.6 Results and discussions	324
6.5 COMMENTS ON SEISMIC SAFETY REQUIRMENTS FOR EXIS	STING
OLD TYPE RC BUILDING IN MADINAH	355
Chapter 7: SUMMARY, CONCLUSIONS AND	
RECOMMENDATIONS FOR FUTURE WORL	K
7.1 GENERAL	362
2 SUMMARY AND CONCLUSIONS	

/• 4•1	Arabia	363
7.2.2	ProposedExpression for the fundamental period of the typical in-	
	filled RC frame buildings in Madinah	364
7.2.3	Recommended equation for modeling of infill of RC building as	
	equivalent link member	366
7.2.4	The effect of infill in RC building for improving their structural	
	Safety	368
7.2.5	Measured Dynamic characteristics and theoretical modeling of 5-story	500
	RC moment frame building and 15 story RC duel system with	368
	moment frame building in Madina City	300
7.2.6	Seismic Evaluation of old Building Type in Madinah	369
7.2.7	Seismic Evaluation of relatively New Building Type in Madinah	370
7.2.8	Determination of the level of yield point for RC buildings from the	
	pushover analysis	370
7.2.9	The effect of changing the brick clad wall compressive strength values	
	on pushover analysis	371
7.2.10	The effect of using different inelastic hysteretic systems from	
	FEMA440 on pushover analysis	372
7.3 RECO	MMENDATIONS	372
REFEREN	NCES	374
	LIST OF TABLESS	
Γable 2.1	Approximate fundamental period formulas for buildings by	13
	different seismic codes in the world	
Table 2.2	Summary of results on periods for different regions, $T = C_t H^x$	15
Table 2.3	Summary of results on periods for different regions $T = \alpha_N N$,	16
	Kwon and Kim (2010) and Navarro et al.(2012)	10
Table 2.4	Summary of results on periods for different regions, $T = \alpha_H H$	17
Table 2.5	Modification factors $\alpha 1$, $\alpha 2$, and $\alpha 3$ of equation 2.5 according to	
	Amanat and Hoque (2006)	18

Table 2.6	Modification factors $\alpha 1$, $\alpha 2$, $\alpha 3$ and $\alpha 4$ of equation 2.7 according	19
	to Barghi and Azadbakht (2012)	19
Table 2.7	Theoretical expressions for stiffness calculation, Kirtas et al (2007)	21
Table 2.8	Modes of failure of masonry in-filled RC frames, Murty and Jain (2000)	23
Table 2.9	Advantages and disadvantages of masonry infill walls on steel or	25
	concrete frame, Tabeshpour (2012)	23
Table 2.10	Formulation for width of equivalent diagonal strut, Samoila (2012)	34
Table 2.11	Default Strength Values, FEMA 356 (2000)	35
Table 2.12	Default lower Bound Masonry Properties, ASCE/SEI 41 (2007)	36
Table 2.13	Module of elasticity for equivalent masonry struts	36
Table 3.1	Site Classification	56
Table 3.2	Values of Fa as a function of site class and mapped short period	57
	maximum considered earthquake spectral acceleration	31
Table 3.3	Values of Fv as a function of site class and mapped 1-second	57
	period maximum considered earthquake spectral acceleration	31
Table 3.4	Design Coefficient and Factors for Basic seismic Force-Resisting	61
	Systems, (SBC 301)	
Table 3.5	Coefficient for upper limit on calculated period	65
Table 3.6	Values of approximate period parameters C_t and \boldsymbol{x}	66
Table 4.1	Fundamental Periods of Tested Buildings	82
Table 4.2	Parameters proposed by the seismic codes of different countries	84
	(RC buildings)	
Table 4.3	Values of Approximate Period Parameters Ctand x for category 2	84
Table 4.4	Base shear percentage of total load (%W)	88
Table 5.1	Earthquake hazard levels (ATC 40, 1996)	189
Table 5.2	Earthquake hazard levels (FEMA 356, 2000)	190
Table 5.3	Description of structural performance levels (ATC 40, 1996)	191
Table 5.4	Global acceptability limits for various performance levels	
	(ATC 40, 1996)	192
Table 5.5	Values for Modification Factor, Co	198
Table 5.6	Values of Modification Factor C ₂	199
Table 5.7	Coefficients for Use in Equations for FEMA356 and FEMA440	202
Table 5.8	Values for a and b coefficients	220

Table 5.9	FEMA 356 acceptance criteria for nonlinear procedures – RC	
	beams controlled by flexure (adapted from ASCE 2000)	225
Table 5.10	FEMA 356 acceptance criteria for nonlinear procedures - RC	226
	columns controlled by flexure (adapted from ASCE 2000)	
Table 5.11	Material Properties	238
Table 6.1a	Material Properties for Building 1	255
Table 6.1b	Table 6.1b: Total static loads for 5 RC building due to EQ and	262
	Wind load cases	
Table 6.2	Measured Modes for Building 1	262
Table 6.3	Theoretical Modes for Building 1	262
Table 6.4	Base shear and Target Displacement values for the three Models	284
Table 6.5	The ratio of of base shear for Model with infill to Model without	
	infill in X or Y directions	284
Table 6.6	V yield values (kN)	285
Table 6.7	Ratio of V yield to V at first yield	285
Table 6.8	Results of Pushover Analysis for building 1 according to ATC-40,	_00
	X-axis direction	294
Table 6.9	Results of Pushover Analysis for building 1 according to ATC-40,	_, .
	Y-axis direction	294
Table 6.10	The Ratio of Base shear V with to without clad	297
Table 6.11	Results of Pushover Analysis for building 1 with three values	
	of clad wall compressive strength, ATC-40, X-axis direction	306
Table 6.12	Results of Pushover Analysis for building 1 with three values	306
	of clad wall compressive strength, ATC-40, Y-axis direction	
Table 6.13	Coefficients for use in Equations for Effective Damping, FEMA	308
	440	
Table 6.14	Coefficients for use in Equations for Effective Period, FEMA 440	308
Table 6.15	Results of Pushover Analysis for different inelastic	315
	hystereticsystems, FEMA 440, EQX(design spectrum function in	
	Madina)	
Table 6.16	Results of Pushover Analysis for different inelastic hysteretic	315
	systems, FEMA 440, EQY(design spectrum function in Madina)	
Table 6.17	Pushover Analysis fordifferent inelastic hysteretic systems, FEMA	314