REGIMES ON PHYSIOLOGICAL AND BIOCHEMICAL VARIABLES IN JAPANESE QUAIL

By EMAN FARAG EL DALY

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy in Agricultural Sciences

(Poultry Physiology)

1265

Department of Poultry Production
Faculty of Agriculture
Ain Shams University
1994

APPROVAL SHEET

ON PHYSIOLOGICAL AND BIOCHEMICAL VARIABLES IN JAPANESE QUAIL

Βv

EMAN FARAG EL DALY

B.Sc. Agric, (Poultry production), Ain Shams Univ., 1980 M.Sc., Agric., (Poultry production), Ain Shams Univ., 1987

This thesis for Ph.D. Degree has been approved by :

- 1- Prof. Dr. MOHAMED G. KAMAR

 Professor of Poultry Physiology, Anim. Prod. Dept.,
 Fac. of Agric., Cairo University
- 2- Prof. Dr. FADIA M. NOSSEIR

 Professor of Poultry Physiology, Anim. Prod.

 Res. Inst. Agric. Res. Center.
- 3- Prof. Dr. MAIE F. ALI

 Professor of Poultry Physiology, Poultry prod. Dept.,
 Fac. of Agric., Ain Shams University

Date of examination, 2e/m/m = 1994

EFFECT OF DIFFERENT LIGHTING AND FEED REGIMES ON PHYSIOLOGICAL AND BIOCHEMICAL VARIABLES IN JAPANESE QUAIL

Ву

EMAN FARAG EL DALY

B.Sc., Agric. (Poultry production), Ain Shams Univ., 1980 M.Sc., Agric. (Poultry production), Ain Shams Univ., 1987

Under supervision of :

Prof. Dr. MAIE F. ALI

Professor of Poultry Physiology, Faculty of Agriculture, Ain Shams University

Prof. Dr. HATEM M. ALI

Head of Animal and Poultry
Nutrition and Production Laboratory
National Research Center

Dr. HISHAM M. SHOUKRY

Assistant Professor of Poultry Physiology, Faculty of Agriculture, Al Azhar University

Abstract

A series of experiments were conducted to assess the growth performance, digestibility of nutrients, carcass components and their chemical composition, blood hormonal and biochemical changes which occurred during the growing period of Japanese quail maintained under different lighting and feed regimes. Three lighting programs: 4L:10D:2L: 8D; 14L:4D:4L:2D, and 14L; 10D. Chicks were fed from one to 42 days of age on three feeding regimes: 100%, 90%, and 80% of the ad libitum consumption.

The results indicated that intermittent light and feed restriction were effective in increasing body weight of both sexes. Both light treatments and the interaction between light

and feed restriction showed highly significant effect on body gain. Light and feed restriction showed highly significant effect on actual feed consumption. Quail pattern of feed consumption differed not only by seasons but also during the growing period. Various light regimes affected significantly feed conversion, however, the results of the effect of feed restriction was conflicting.

Although light had no significant effect on the gastrointestinal tract weight or length, feed restriction and the interaction between body weight and feed restriction and sex significantly affected the length of the gastrointestinal tract. Interaction between body weight and intermittent light, and light and feed regimes significantly affected weight of carcass components. Light and feed restriction are negatively affected the fat content of quail carcass.

Light regimes reduced the level of serum thyroid hormones, however the interaction between light and feed restriction had highly significant effect on T4 and T3/T4 ratio at 6 weeks of age. Positive correlation coefficients (r) were found between T3 and body weight and breast meat yield, but negative correlation (r) between T3 and thigh and liver weight. These studies showed inverse relationship between feed restriction and plasma glucose level at 6 weeks of age. Neither light nor feed or sex and their interactions significantly affected creatine kinase level. But creatine kinase was negatively correlated with body weight and thigh, and positively correlated with breast, liver weights and T3 level.

Key words: quail, light, feed restriction, T3, T4 performance, carcass, glucose, creatine kinase.

ACKNOWLEDGMENTS

This work has been done under the supervision of **Dr. MAIE F. Ali** Professor of Poultry Physiology, Faculty of Agriculture, Ain Shams University for whom I am grateful, I am greatly indebted to her for suggesting the problem, sincere encouragement during the course of this study and writing of this manuscript.

My great thanks goes to **Dr. H. M. Ali,** Professor of Poultry Nutrition and Head of Animal and Poultry Nutrition and Production Laboratory, National Research Center for suggesting the nutritional part of the project and for his valuable criticism, continuous encouragement and kind advice during the whole course of this study.

I am expressing my deep gratitude to **Dr. H. M. Shoukry**Assistant Professor of Poultry Physiology, Al Azhar University
for his unlimited help on the statistical analysis, continuous
and precious guidance.

Finally, I would like to thank my colleagues in the Departments of Poultry production, Faculty of Agriculture, Ain Shams University and Animal and. Poultry Nutrition, National Research center for their valuable help.

CONTENTS

	Page
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
I.I. Productive performance	3
I.I.a. Effect of intermittent light on productive	
performance during growing period	3
I.I.b. Effect of feed restriction on productive	
performance during growing period	6
I.I.c. Effect of intermittent light and feed	
restriction on productive performance	
during growing period	13
I.I.d. Effect of sex on productive performance	
during growing period	16
I.2. Diet digestibility	18
I.2. a. Effect of intermittent light on diet	
digestibility	18
I.2. b Effect of feed restriction on diet	
digestibility	18
I.2.c Effect of intermittent light and feed	
restriction on diet digestibility	19
2.1. Gastrointestinal tract	19
2.1.a. Effect of intermittent light and feed	
restriction on gastrointestinal tract	19
2.1.b. Effect of combined intermittent light and	
feed restriction on gastrointestinal tract.	
2.1.c. Effect of sex on gastrointestinal tract	20

P	age
2.2.Carcass components	21
2.2.a. Effect of intermittent light on carcass	
components	21
2.2.b. Effect of feed restriction on carcass	
components	25
2.2.c. Effect of intermittent light and feed	
restriction on carcass components	29
2.2.d. Effect of sex on carcass components	30
2.3. Carcass chemical composition	33
2.3.a. Effect of intermittent light on carcass	
chemical composition	33
2.3.b. Effect of feed restriction on carcass	
chemical composition	34
2.3.c. Effect of intermittent light and feed	
restrction on carcass chemical composition.	39
3.1. Thyroid hormones	39
3.1.a.Effect of intermittent light on thyroid	
hormones	39
3.1.b Effect of feed restriction on thyroid	
hormones	. 41
3.1.c. Effect of intermittent light and feed	
restriction on thyroid hormones	44
3. 2. Glucose level	45
3. 2.a. Effect of intermittent light on glucose	
level	45
3. 2.b. Effect of intermittent light and feed	
restriction on glucose level	46
3. 2.c. Effect of intermittent light and feed	
restriction on glucose level	48
3. 2.d. Effect of sex on glucose level	48

	Pa	ge
	3.3. Creatine kinase	19
	3.3.a. Effect of intermittent light, feed	
	restriction and combined intermittent light	
	and feed restriction on creatine kinase	19
	3.3.b. Effect of sex on creatine kinase	
Ш.	MATERIALS AND METHODS	50
IV.	RESULTS AND DISCUSSION	63
	I.1 Productive performance	63
	I.1.I. Body weight	63
	I.1.2. Body gain	74
	I.1.3. Feed consumption	83
	I.1.4, Feed conversion.	97
	I.1.5. Mortality	108
	I.2. Digestibility coefficients of nutrients	108
	2.1. Gastrointestinal tract measurments	113
	2.1.1. Gastrointestinal tract weight	113
	2.1.2. Gastrointestinal tract length	125
	2.1.3. Proventriculus weight	129
	2.1.4. Gizzard weight	131
	2.1.5. Small intestine weight	133
	2.1.6. Small intestine length	134
	2.1.7. Large intestine weight	138
	2.1.8. Large intestine length	139
	2.1.9. Liver weights	141
	2.1.10. Heart weight	144
	2.2.Carcass components	147
	2.2.1. Skin weight	147
	2.2.2. Breast weight	156
	2.2.3. Thigh weight	159

		Page
	2.2.4. Yield of edible components.	160
	2.2.5. Blood losses	. 162
	2.2.6. Head weight	163
	2.2.7. Neck weight	165
	2.2.8. Wings weight	. 166
	2.2.9. Legs weight	167
	2.2.10. Feather weight	168
	2.2.11. Offal weight	169
	2.2.12. Dressing weight	170
2.3.Carcass	chemical composition	171
	2.3.1. Carcass moisture	171
	2.3.2. Carcass crude protein	. 173
	2.3.3. Carcass fat	175
	2.3.4. Carcass ash	177
3.1. Thyroid	hormones	178
3.2. Glucose.		190
3.3. Creatine	kinase	195
V. SUMMA	RY AND CONCLUSIONS	202
VI. REFER	ENCES	207
VII ARAR	IC SUMMARY	

LIST OF TABLES

Table		Page
1	Composition of quail's starter and grower ratio	55
2	Composition of vitamines and minerals mixture	. 56
3	Least square means of body weight of Japanese quail brooded under different intermittent light regimes in 1st, 3rd, and 4th experiment.	. 64
4	Analysis of variance of body weight of Japanese quail brooded under different intermittent light regimes in 1st, 3rd, and 4th experiment.	67
5	Least square means of body weight of Japanese quail brooded under different intermittent light and feed restriction regimes in experiment 2	69
6	Least square means of body weight of Japanese quail brooded under different intermittent light and feed restriction regimes in experiment 5	72
7	Analysis of variance for body weight of Japanese quail brooded under different intermittent light and feed restriction regimes in 2nd and 5th experiment	,75
8	Least square means of body gain of Japanese quail brooded under different intermittent light regimes in 1st,3rd, and 4th experiment.	76
9	Analysis of variance for body gain of Japanese quail brooded under different intermittent light regimes in 1st 3rd and 4th experiment.	. 77

Table		Page
10	Least square means of body gain of Japanese quail brooded under different intermittent light and feed restriction regimes in experiment 2.	79
11	Least square means of body gain of Japanese quail brooded under different intermittent light and feed restriction regimes in experiment 5.	8 1
12	Analysis of variance for body gain of Japanese quail brooded under different intermittent light and feed restriction regimes in 2nd and 5th experiment.	84
13	Average feed consumption of Japanese quail brooded under different intermittent light regimes in 1st, 3rd and 4th experiment.	86
14	Analysis of variance for feed consumption of Japanese quail brooded under different intermittent light regimes in 1st, 3rd and 4th experiment.	88
15	Average feed consumption of Japanese quail brooded under different intermittent light and feed restriction regimes in experiment 2.	90
16	Analysis of variance for feed consumption of Japanese quail brooded under different intermittent light and feed restriction regimes in experiment 2	93
17	Average feed consumption of Japanese quail brooded under different intermittent light and feed restriction regimes in experiment 5.	94

Table	Page
18	Analysis of variance for feed consumption of Japanese quail brooded under different intermittent light and feed restriction regimes in experiment 5 96
19	Average feed conversion of Japanese quail brooded under different intermittent light regimes in 1st,3rd and 4th experiment. 98
20	Analysis of variance for feed conversion of Japanese quail brooded under different intermittent light regimes in 1st, 3rd and 4th experiment
21	Average feed conversion of Japanese quail brooded under different intermittent light and feed restriction regimes in experiment 2
22	Analysis of variance for feed conversion of Japanese quail brooded under different intermittent light and feed restriction regimes in experiment 2 104
23	Average feed conversion of Japanese quail brooded under different intermittent light and feed restriction regimes in experiment 5
24	Analysis of variance for feed conversion of Japanese quail brooded under different intermittent light and feed restriction regimes in experiment 5 106
25	Average of digestion coefficient of Japanese quail brooded under different intermittent light and feed restriction regimes in experiment 5
26	Analysis of variance for digestion coefficient of Japanese quail brooded under different intermittent light and feed restriction regimes in experiment 5 112

Table	F	'age
27	Least square means of gastrointestinal tract of Japanese quail brooded under different intermittent light and feed restriction regimes at 2 weeks of age in experiment 2.	114
28	Least square means of gastrointestinal tract of Japanese quail brooded under different intermittent light and feed restriction regimes at 4 weeks of age in experiment 2.	116
29	Least square means of gastrointestinal tract of Japanese quail brooded under different intermittent light and feed restriction regimes at 6 weeks of age in experiment 2.	117
30	Analysis of covariance for gastrointestinal tract of Japanese quail brooded under different intermittent light and feed restriction regimes at 2and 4 weeks of age in experiment 2.	119
31	Analysis of covariance for gastrointestinal tract of Japanese quail brooded under different intermittent light and feed restriction regimes at 6 weeks of age in experiment 2.	120
32	Least square means of gastrointestinal tract of Japanese quail brooded under different intermittent light and feed restriction regimes at 2 weeks of age in experiment 5.	121
33	Least square means of gastrointestinal tract of Japanese quail brooded under different intermittent light and feed restriction regimes at 4 weeks of	122

Table		Page
34	Least square means of gastrointestinal tract of Japanese quail brooded under different intermittent light and feed restriction regimes at 6 weeks of age in experiment 5.	123
35	Analysis of covariance for gastrointestinal tract of Japanese quail brooded under different intermittent light and feed restriction regimes at 2 and 4 weeks of age in experiment 5.	126
36	Analysis of covariance for gastrointestinal tract of Japanese quail brooded under different intermittent light and feed restriction regimes at 6 weeks of age in experiment 5.	127
37	Least square means of carcass components of Japanese quail brooded under different intermittent light and feed restriction regimes at 6 weeks of age in experiment 2.	148
38	Analysis of covariance for carcass components—weight of Japanese quail brooded under different intermittent light and feed restriction regimes at 6 weeks of age in experiment 2.	
39	Least square means of carcass components of Japanese quail brooded under different intermittent light and feed restriction regimes at 6 weeks of age in experiment 5.	
40	Analysis of covariance for carcass components—weigh of Japanese quail brooded under different intermittent light and feed restriction regimes at 6 weeks of age in experiment 5.	