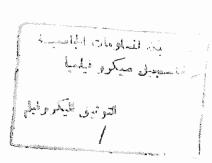
# TOXICOLOGICAL STUDIES ON SOME PREDACEOUS MITES



## By GOMAA MOHAMED AHMED ABO-ELELLA

A thesis submitted in partial fulfillment


of

the requirements for the degree of

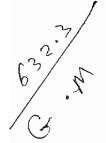
MASTER OF SCIENCE

in

(Agricultural Zoology)



Department of Plant Protection
Faculty of Agriculture
Ain Shams University


(1) (2) C

1993



### APPROVAL SHEET

# TOXICOLOGICAL STUDIES ON SOME PREDACEOUS MITES



#### BY

### GOMAA MOHAMED AHMED ABO-ELELLA

B.Sc. of Agric. Sci. (Plant Protection) 1986 Fac. of Agric., Zagazig Univ.

This thesis for M. Sc. degree has been Approved by:

Prof. Dr. Madiha M. Abd-EL-Hamid Madha M. Abd-EL-Hamid Madha M. Abd-EL-Hamid Prof. of Agricultural Zoology, Fac. of Agric., Alexandria University.

Prof. Dr. Sherif M. Hafez

Prof. of Agricultural Zoology, Fac. of Agric., Ain Shams University.

Prof. Dr. Esmat M. K. Hussein ESMALL M.K. Hussein
Prof. of Pesticides, Fac. of Agric., Ain Shams University.

Date of Examination: 12/6/ 1993.



## TOXICOLOGICAL STUDIES ON SOME PREDACEOUS MITES

#### Вy

#### GOMAA MOHAMED AHMED ABO-ELELLA

B.Sc. of Agric. Sci. (Plant Protection) 1986
Fac. of Agric., Zagazig Univ.

Under the supervision of:

Prof. Dr. Esmat M.K. Hussein

Prof. of Pesticides, Fac. Agric., Ain Shams Univ.

Prof. Dr. Aly H. Rasmy

Prof. of Acarology, National Research Center, Cairo

Dr. Samia M. Kilany

Lecturer of Acarology, Fac. Agric., Ain Shams Univ.

#### ABSTRACT

The sublethal effects of three acaricides i.e., Comite, Peropal and Tedion on the biology and predatory efficiency of the two predaceous mites <u>Amblyseius swirskii</u> and <u>Agistemus exsertus</u> were laboratory assessed.



The present study reveals a variation in the level of response of both predators to the acaricides used, and the effects of these acaricides were nocuous nonetheless sublethal concentrations were applied.

In addition, results reveal also that the stigmaeid mite,  $\underline{A}$ . exsertus is less tolerant to the acaricides used compared to the phytoseiid mite,  $\underline{A}$ . swirskii.



#### ACKNOWLEDGMENT

I would like to express my appreciation and gratitude to Prof. Dr. Esmat M.K. Husssein, Prof. of Pesticides, Plant Protection Department, Faculty of Agriculture, Ain Shams University and Prof. Dr. Aly H. Rasmy, Prof. of Acarology, Plant Protection Department, National Research Centre, Cairo for their valuable supervision and encouragment during the course of the present work.

Also, I'm indebted to Dr. Samia M. Kilany, Lecturer of Acarology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, for her valuable guidance and help.

### CONTENTS

|      | F                                                                  | age |
|------|--------------------------------------------------------------------|-----|
| I.   | INTRODUCTION                                                       | 1   |
| II.  | REVIEW OF LITERATURE                                               | 3   |
| III. | MATERIALS AND METHODS                                              | 18  |
|      | Structural formula of pesticides used                              | 18  |
|      | 1. Bioassay tests on the two-spotted spider mite .                 | 20  |
|      | 2. Mass-rearing of the predatory mites                             | 22  |
|      | 3. Biological Studies                                              | 23  |
|      | a. Feeding predaceous mites on treated nymphs                      |     |
|      | of the prey                                                        | 23  |
|      | b. Treatment of predatory larvae                                   | 24  |
|      | c. Rearing predators on treated plant-leaf                         |     |
|      | discs                                                              | 25  |
|      | d. Toxicity of pesticides when both prey and                       |     |
|      | predator were chemically treated                                   | 25  |
|      | e. Treatment of prey, predatory larvae, and the                    |     |
|      | rearing plant surface                                              | 26  |
| IV.  | RESULTS                                                            | 27  |
|      | Toxicological studies                                              | 27  |
|      | I. Effect of Comite                                                | 29  |
|      | 1. Developmental response of Agistemus exsertus                    | 29  |
|      | 1.1. Treatment of the prey $\underline{T}$ . $\underline{urticae}$ | 29  |
|      | * Consumption of treated prey by                                   |     |
|      | Agistemus exsertus                                                 | 31  |

| Cont.: |       | Pa                                                                                | ıge |
|--------|-------|-----------------------------------------------------------------------------------|-----|
|        | 1.2.  | Treatment of the predator                                                         | 33  |
|        |       | * Consumption of untreated prey by treated                                        |     |
|        |       | predator                                                                          | 34  |
|        | 1.3.  | Treatment of both prey and predator                                               | 35  |
|        |       | * Consumption of treated prey by treated                                          |     |
|        |       | predator                                                                          | 36  |
|        | 2. De | evelopmental response of Amblyseius swirskii                                      | 37  |
|        | 2.1.  | Treatment of the prey $\underline{\mathtt{T}}.$ $\underline{\mathtt{urticae}}$    | 37  |
|        |       | * Consumption of treated prey by                                                  |     |
|        |       | Amblyseius swirskii                                                               | 39  |
|        | 2.2.  | Treatment of the predator                                                         | 39  |
|        |       | * Consumption of untreated prey by treated                                        |     |
|        |       | predator                                                                          | 41  |
|        | 2.3.  | Treatment of plant surface                                                        | 42  |
|        |       | * Consumption of untreated prey by untrea-                                        |     |
|        |       | ted predator placed on treated surface .                                          | 43  |
|        | 2.4.  | Treatment of prey, predator and surface                                           | 44  |
|        |       | * Consumption of treated prey by treated                                          |     |
|        |       | predator placed on treated surface                                                | 45  |
| II.    | Effe  | ect of Peropal                                                                    | 45  |
|        | 3. 1  | Developmental response of Agistemus exsertus                                      | 45  |
|        | 3.1   | . Treatment of the prey $\underline{\mathtt{T}}$ . $\underline{\mathtt{urticae}}$ | 45  |
|        |       | * Consumption of treated prey by                                                  |     |
|        |       | Agistemus exsertus                                                                | 48  |

| Cont.:                                                             | ıge |
|--------------------------------------------------------------------|-----|
| 4. Developmental response of Amblyseius                            |     |
| swirskii                                                           | 48  |
| 4.1. Treatment of the prey $\underline{T}$ . $\underline{urticae}$ | 48  |
| * Consumption of treated prey by                                   |     |
| Amblyseius swirskii                                                | 51  |
| 4.2. Treatment of the predator                                     | 53  |
| * Consumption of untreated prey by trea-                           |     |
| ted predator                                                       | 54  |
| 4.3. Treatment of both prey and predator                           | 55  |
| * Consumption of treated prey by treated                           |     |
| predator                                                           | 56  |
| III. Effect of Tedion                                              | 57  |
| 5. Developmental response of Agistemus                             |     |
| <u>exsertus</u>                                                    | 57  |
| 5.1. Treatment of the prey $\underline{T}$ . $\underline{urticae}$ | 57  |
| * Consumption of treated prey by                                   |     |
| Agistemus exsertus                                                 | 59  |
| 5.2. Treatment of the predator                                     | 59  |
| * Consumption of untreated prey by                                 |     |
| treated predator                                                   | 61  |
| 5.3. Treatment of both prey and predator                           | 62  |
| * Consumption of treated prey by treated                           |     |
| predator                                                           | 63  |

| Cont. | : Pa                                                                                 | age |
|-------|--------------------------------------------------------------------------------------|-----|
|       | 6. Developmental response of Amblyseius                                              |     |
|       | swirski i                                                                            | 64  |
|       | 6.1. Treatment of the prey $\underline{\mathbf{T}}$ . $\underline{\mathbf{urticae}}$ | 64  |
|       | * Consumption of treated prey by                                                     |     |
|       | Amblyseius swirskii                                                                  | 66  |
|       | 6.2. Treatment of the predator                                                       | 68  |
|       | * Consumption of untreated prey by                                                   |     |
|       | treated predator                                                                     | 68  |
|       | 6.3. Treatment of plant surface                                                      | 69  |
|       | * Consumption of untreated prey by                                                   |     |
|       | untreated predator placed on treated                                                 |     |
|       | surface                                                                              | 69  |
|       | 6.4. Treatment of prey, predator and plant                                           |     |
|       | surface                                                                              | 70  |
|       | * Consumption of treated prey by treated                                             |     |
|       | predator placed on treated surface                                                   | 71  |
| v.    | DISCUSSION                                                                           | 72  |
| vı.   | SUMMARY                                                                              | 76  |
| VII.  | REFERENCES                                                                           | 87  |
| viii. | ARABIC SUMMARY                                                                       |     |

### LIST OF TABLES

| Page                                                               | је |
|--------------------------------------------------------------------|----|
| No.                                                                |    |
| . Toxicity of the Comite, Peropal and Tedion to                    |    |
| T. urticae nymphs                                                  | 27 |
| . Effect of Comite on developmental durations of                   |    |
| $\underline{A}$ . exsertus and egg oviposition                     | 30 |
| . Effect of Comite on consumption of A. exsertus                   | 32 |
| . Effect of Comite on developmental durations of                   |    |
| A. swirskii and egg oviposition                                    | 38 |
| 5. Effect of Comite on consumption of A. swirskii.                 | 40 |
| . Effect of Peropal on developmental durations of                  |    |
| A. exsertus and egg oviposition                                    | 46 |
| . Effect of Peropal on consumption of $\underline{A}$ . exsertus . | 49 |
| 3. Effect of Peropal on developmental durations of                 |    |
| A. swirskii and egg oviposition                                    | 50 |
| . Effect of Peropal on consumption of A. swirskii .                | 52 |
| 0. Effect of Tedion on developmental durations of                  |    |
| A. exsertus and egg oviposition                                    | 58 |
| 11. Effect of Tedion on consumption of A. exsertus                 | 60 |
| 12. Effect of Tedion on developmental durations of                 |    |
| A. swirskii and egg oviposition                                    | 65 |
| 3. Effect of Tedion on consumption of A. swirskii                  | 67 |



| No.                                          | Page |
|----------------------------------------------|------|
| 1. Toxicity of Comite, Tedion and Peropal to |      |
| T. urticae nymphs                            | . 28 |



#### INTRODUCTION

For many centuries, the settlements of man, specially in agriculture, have had to contend with various undesirable and sometimes harmful organisms, i.e. weeds, insects, microorganisms and others, collectively called pests.

In addition, agriculture expansion has created many pest problems and has intensified some others.

In Egypt, as well as other areas of the world, the phytophagous mites, particularly the two-spotted spider mite, Tetranychus urticae Koch, has been considered a potentially serious pest of wide variety of major crops, infesting cotton, crop and ornamented plants, evergreen and deciduous fruit trees as well. Such populations of this animal pests are primarily controlled by the predaceous mites.

The use of chemical pesticides has become the predominant method of controlling these unwanted organisms in much of the world. Also, significant groups of pests, i.e. insects, mites etc. have developed strains that are genetically resistant to the pesticides.

In most investigations attempts were made to evaluate the relative potency of pesticides used to control the spider mites. On the other hand, effects on the predaceous mites preying on such sprayed spider mite have, to some extent, been neglected.

2 ^

Accordingly, efforts were made, in the present investigation, to evaluate the relative toxicity and effects of LC<sub>50</sub> dosages of certain pesticides, namely Comite, Peropal and Tedion on some biological aspects, i.e. development, fecundity and consumption of the prey T. urticae by the predaceous mites Amblyseius swirskii Athias - Henriot and Agistemus exsertus Gonzalez. The former animal pertaining to family Phytoseiidae while the latter to Stigmaeidae.