PREPARATION AND KINETIC STUDIES ON PREPARATION METAL COMPLETE TRANSITION METAL COMPLETE, ON

THESIS SUBMITTED

BY

ALAA EL-DIN MOKHTAR ABD EL-HADG

M.Sc (Chemistry) 1990

TO

CHEMISTRY DEPARTEMENT

FACULTY OF SCIENCE

AIN SHAMS UNIVERSITY

FOR

DOCTOR OF PHILOSOPHY

IN CHEMISTRY

512.64

SUPERVISED BY

Prof.Dr. M.FATHY EL-SHAHAT

Prof. OF ANALYTICAL & INORGANIC CHEMISTRY FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

Prof.Dr. A.AHMED ABDEL-KHALEK

Prof. OF PHYSICAL CHEMISTRY FACULTY OF SCIENCE CAIRO UNIVERSITY AT BENI-SUEF BRANCH

1994

PREPARATION AND KINETIC STUDIES OF SOME TRANSITION METAL COMPLEXES

Thesis Advisors

Approved

1 - Prof.Dr. M.FATHY EL- SHAHAT.

2 - Prof.Dr. A.AHMED ABDEL-KHALEK.

Prof.Dr. F.FAHMEY

Head of Chemistry Departement

A.F.M. Fahmy

ACKNOWLEDGEMENT

First and foremost, I would like to thank God for giving me the apportunity and will-power to accomplish my ph.D.

I would like to express my deepest gratitude to Dr. M.F.EL-Shahat professor of inorganic and analytical chemistry faculty of science Ain shams university for suggesting the field of the present work, for his valuable guidance and helpful discussions throughout the period of research.

Indebtness is deeply acknowledged to Dr A. Ahmed Abd-EL Khalek professor of physical chemistry and chemical kinetics and vice deen of faculty of science Cairo university at beni-suef branch for suggesting the plane, continuous valuable guidance, supervision, useful discussion and criticism during this work.

Sincere thanks are extended to Dr. N.A.Gabr head of laboratory sector of N.C.C for providing the facilities by chemicals and instruments during the period of this research.

My deepest gratitude should be directed to all colleagues in computer department of N.C.C. about their help.

CONTENTS

	rage
LIST OF FIGURES	••
LIST OF TABLE	
SUMMARY	•••
CHAPTER I	
1 - Mechanism of Electron - Transfer	2
2 - N-bromosuccinimide as an oxidizing agent	8
3 - Oxidation of organic compounds by (NBS)	8
4 - Oxidation of inorganic compounds by (NBS)	14
5 - Chromium (III) complexes	18
6 - Electronic structures of chromium (III) complexes	20
7 - Kinetic oxidation of CrIII complexes	22
8 - Kinetic aspects of analytical chemistry	22
AIM OF PRESENT WORK	29
CHAPTER II	30
EXPERIMENTAL	30
1 - Chemicals and solutions	30
2 - Kinetic procedures	31
3 - Analysis of Kinetic data	32
CHAPTER III	35
RESULTS AND DISCUSSION	35
PART I Oxidation of Cr III - by N-bromosuccinimide	35

Oxidation product	35
Stoichiometry of the reaction	35
Kinetics of [CrIII] reaction by N-bromosuccinimide in aqueou solution	
Effect of chromium (III) concentration	36
Effect of N-bromosuccinimide concentration	37
Effect of pH	38
Effect of ionic strength on the reaction rate	39
Effect of temperature	10
Discussion	41
Kinetic in methanol - water solvent mixtures	
PART II	
Oxidation of [Cr ^{III} (Hedta)(H ₂ O)] by N-bromosuccinimde	
Oxidation product5	52
Stoichiom etry of the reaction5	2
Kinetics of [Cr ^{III} (Hedta)(H ₂ O)] reaction by N-bromosuccinimde	
Effect of complex concentration5	3
Effect of N-bromosuccinimde concentration5	4
Effect of pH5	5
Effect of ionic strength on the reaction rate	57
Effect of temperature57	7
Discussion	59
PART III	

Oxidation of [Cr ¹¹¹ (en) ₃] ³⁺ by N-bromosuccinimde
Oxidation product66
Kinetics of $[\operatorname{Cr}^{III}(\operatorname{en})_3]^{3+}$ reaction by NBS in aqueous solution66
Effect of complex concentration
Effect of N-bromosuccinimde concentration67
Effect of pH68
Effect of ionic strength on the reaction rate70
Effect of temperature70
Discussion
Kinetics of $[Cr^{III}(en)_3]^{3+}$ reaction by NBS in MeOH- H2O solven76
Discussion79
PART IV
Kinetic determination of ammonia
Oxidation product83
Effect of ammonia added83
Effect of pH83
Effect of interfering ions85
Discussion85
CONCLUSION88
REFERENCES90
TABLE APPENDEX (Tables 1 - 22)
ARABIC SUMMARY

LIST OF FIG. 30.

Part I

- Fig. 1 Change in absorbance as a function of time for the reaction between Cr^{III} and NBS
- Fig. 2 Pseudo-First order plots for the reaction at different Cr^{III}concentrations
- Fig. 3, 4. Pseudo-first order plots for the reaction at different NBS concentrations.
- Fig. 5 Plots of [NBS] $^{-1}$ versus k_{obs}^{-1} at 30 o C.
- Fig. 6 Pseudo first order plots for the reaction at pH= 7.o.
- Fig. 7 Pseudo -first order plots for the reaction at pH=7.4.
- Fig. 8 Pseudo-first order plots for the reaction at pH=7.7.
- Fig. 9 Pseudo first order plots for the reaction at pH = 8.0.
- Fig. 10 Plots of [NBS] $^{-1}$ versus k^{-1} obs at different pH Values.
- Fig. 11 Plots of slope (1/a) versus [H] ⁺ at 30 °C.
- Fig. 12 Plots of intercept b/a versus [H] ⁺ at 30 °C.
- Fig. 13 Pseudo first order plots for the reaction at different values of ionic strength.
- Fig. 14 Pseudo first order plots for the reaction at $T = 35^{\circ}$ C.
- Fig. 15 Pseudo first order plots for the reaction at $T = 40^{\circ}$ C.
- Fig. 16 Plots of [NBS] -1 versus k -1 obs at different temperatures.
- Fig. 17 Plots of $([H^+] + K_h/K_hK_2k_4$ versus $[H^+]$ at 30° C.
- Fig. 18 Plots of $(K_1[H^+] + K_h K_2) / K_h K_2 k_4$ versus $[H^+]$ at 30° C.
- Fig. 19 Pseudo first order plots for the reaction at different methanol -water

solvent mixtures.

Fig. 20 Plots of k⁻¹ obs versus [methanol] / [water].

Part II

- Fig. 21 Change in absorbance as a function of time in the reaction between $[Cr(Hedta)(H_2O)]$ and NBS.
- **Fig.22** Variation of absorbance versus time at different complex concentrations.
- Fig. 23 Plots of log [Cr VI] / dt versus log [complex].
- Fig. 24 Plots of absorbance versus time at different NBS concentrations.
- Fig. 25 Plots of [NBS]⁻¹ versus k^{-1}_{obs} at T=30°C.
- Fig. 26 Variation of absorbance with time at pH = 6.0.
- Fig. 27 Variation of a bsorbance with time at pH= 6.2.
- Fig. 28 Variation of absorbance with time at pH = 6.4.
- Fig. 29 Variation of absorbance with time at pH= 6.8.
- Fig. 30 Plots of k^{-1} obs versus [NBS] $^{-1}$ at different pH values.
- Fig. 31 Plots of slope (1/a) versus $[H^{+}]$ at 30° C.
- Fig. 32 Plots of intercept (b/a) versus [H⁺] at 30°C.
- Fig.33Variation of absorbance versus time at different values of ionic strength
- Fig. 34 Variation of absorbance with time at Temp. = 20° C.
- Fig. 35 Variation of absorbance with time at Temp.= 25°C.
- Fig. 36. Variation of absorbance with time at Temp.= 35°C...
- Fig. 37 Variation of absorbance with time at Temp.=40°C.

- Fig. 38 Plots of [NBS]⁻¹ versus k⁻¹ obs at different pH values.
- Fig. 39 Plot of $([H^+] + K_2 / K_2 K_4 k_6)$ versus $[H^+]$ for the reation of $[Cr^{III}$ Hedta $[(H_2O)]$ with NBS at 30 O C.
- Fig. 40 Plot of $(K_3[H^+]+K_2K_4)/K_2K_4k_5$ versus $[H^+]$ at 30 °Co.

Part III

- Fig. 41 Change in absorbance as a function of time for the reaction between ${\rm [Cr(en)\ _3]}^{3+}{\rm and\ NBS\ }.$
- Fig. 42 Variation of absorbance against time at diff . [Cr(en) $\frac{3}{3}$].
- Fig. 43 Plots of log rate against log [Cr(en) $_3^{3+}$] at 30 $^{\circ}$ C.
- Fig .44Variation of absorbance versus time at different [NBS] concentrations .
- Fig. 45 Plots of [NBS]⁻¹ versus k_{obs}^{-1} for the reaction of [Cr(en) $_3$]³⁺ with NBS at 30° C.
- Fig. 46 Variation of absorbance of $[Cr(en)_3]^{3+}$ with time at pH = 7.0.
- Fig. 47 Variation of absorbance of $[Cr(en)_3]^{3+}$ with time at pH = 7.7.
- Fig. 48 Variation of absorbance of $[Cr(en)_3]^{3+}$ with time at pH = 7.9.
- Fig. 49 Plots of [NBS]⁻¹ versus k_{obs} ⁻¹at defferent pH values.
- Fig. 50 Plots of the slope $(1/k_1)$ versus $[H^+]$ at 30 o C.
- Fig. 51 Plots of the intercept (k_2/k_1) versus $[H^+]$ at 30 ${}^{\circ}C$.
- Fig.52Variation of absorbance versus time at different values of ionic strength
- Fig. 53 Variation of absorbance of $[Cr(en)_3]^{3+}$ with time at T = 25 °C.
- Fig. 54 Variation of absorbance of $[Cr(en)_3]^{3+}$ with time at $T = 35^{\circ}C$.
- Fig. 55 Variation of absorbance of $[Cr(en)_3]^{3+}$ with time at T = 40 °C.

- Fig 56 Plots of [NBS]⁻¹ versus k_{obs}⁻¹ for the reaction of [Cr (en) 3]³⁺ with NBS at diff . temperatures.
- Fig.57 Variation of absorbance with time in presence of different wt% MeOH at 25 Co.
- Fig.58 Variation of absorbance with time in presence of MeOH at 30°C.
- Fig.59Variation of absorbance with time in presence of MeOH at 35°C
- Fig.60 Variation of absorbance with time in presence of MeOH at 40°C.
- **Fig.61** Plots of $-\log k_{obs}$ versus D⁻¹ at 35 and 40°C.
- Fig.62 Plots of k_{obs}⁻¹ versus [MeOH]/[H₂O] for the reaction at 30°C.
- Fig.63 Variation of absorbance with time in presence of EtOH at 25°C.
- Fig.64 Variation of absorbance with time in presence of EtOH at 30°C.
- Fig. 65 Variation of absorbance with time in presence of EtOH at 35°C.
- Fig.66 Variation of absorbance with time in presence of EtOH at 40°C.
- Fig.67 Variation of absorbance with time in presence of n-PrOH at 25°C.
- Fig.68 Variation of absorbance with time in presence of n-PrOH at 30°C.
- Fig.69 Variation of absorbance with time in presence of n-PrOH at 35°C.
- Fig.70 Variation of absorbance with time in presence of n-PrOH at 40°C.

Part IV

- Fig.71 Change of absorbance after definite time with mg -NH3 for the oxida tion of $[Cr^{III}(Hedta)(H_2O)]$ by NBS.
- Fig.72 Variation of absorbance with time for the oxidation of [Cr $^{\rm III}$ (Hedta) (H2O)]by NBS in presence of different mg NH3 .

- Fig. 73 Effect of pH on k_{obs} for the oxidation of $[Cr^{III} (Hedta)(H_2O)]$ by NBS in presence of different mg NH₃.
- Fig.74 Calibration curve for the kinetic determ. of NH_3 .
- Fig.75 Effect of mg ${\rm Cu}^{2+}$ on the absorbance of ${\rm [Cr^{III}\,(Hedta)(H_2O)\,]}$ in presence of ${\rm NH}_3$.

LIST OF TABLES

PART I

- Table I . Stoichiometric results for the oxidation of Cr III by NBS .
- Table II . Variation of k_{obs} with different [Cr III] concentrations .
- Table III . Variation of kobs with different [NBS] concentrations .
- Table IV . Variation of $k_{\mbox{obs}}$ with pH at different [NBS] concentrations .
- Table V. Variation of 1/a and b/a with [H+].
- Table VI. Effect of ionic strength on the reaction rate.
- Table VII. Variation of k_{obs} with different [NBS] concentrations at different temperatures.
- Table VIII . Values of k_4 K_2 at different temperatures .
- Table IX . Values of kobs at different MeOH-H2O solvent mixtures.

PART II.

- Table X . Stoichiometric results for the oxidation of $[Cr^{III}(Hedta)(H_2O)]$ by N-bromosuccinimide.
- Table XI . Variation of initial rate with $[Cr^{III}(Hedta)(H_2O)]$ concentration .
- Table XII . Values of $k_{\mbox{obs}}$ with [NBS] concentration at 30 $^{\mbox{O}}\mbox{C}$.
- Table XIII . Effect of pH on k_{obs} for the oxidation of $[Cr^{III}(Hedta)(H_2O)]$ by NBS .
- Table XIV. Variation of the solpe (1/a) and intercept (b/a) with [H⁺].
- Table XV. Effect of ionic strength on the reaction rate.
- Table XVI. Variation of initial rate with different concentrations of NBS at different temperatures.

Table XVII. Values of a and b at different temperatures.

PART III

Table XVIII. Variation of initial rates with [Cr (en)₃]³⁺.

Table XIV. Variation of initial rates with [NBS].

Table XX. Effect of pH on k_{obs} for the oxidation of $[Cr(en)_3]^{3+}$ by NBS.

Table XXI. Dependence of the slope $1/k_1$ and intercept k_2/k_1 on pH.

Table XXII . Effect of ionic strength on the reaction rate at 30°C .

Table XXIII. Variation of initial rates with [NBS] at different temperatures.

Table XXIV . Values of k1 at different temperatures .

Table XXIVI . Effect of MeOH on kobs at different temperatures .

Table XXIVII. Thermodynamic activation parameters at different MeOH - H2O solvent mixtures.

Table XXIVIII. Effect of solvents on k_{obs} at wt% = 20 and T = 30° C.

Table XXX . Thermodynamic activation parameters at different solvents .

Table XXXI . Effect of mg - NH $_3$ on the rate of oxidation of [Cr III (Hedta) (H $_2$ O)] by NBS .

Table XXXII . Effect of pH on k_{obs} in presence of NH $_3$ for the reactiopn of [Cr III (Hedta) (H2O)] and NBS .

Table XXXIII . Kinetic determination of NH3 .

SUMMARY