HYDROTHERMAL CHARACTERISTICS OF ARTIFICIAL POZZOLANA - CEMENT PASTES

A Thesis Submitted

Ву

MAHMOUD AHMED TAHER M. SC (Chemistry)

To

FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (CHEMISTRY)

1993

HYDROTHERMAL CHARACTERISTICS OF ARTIFICIAL POZZOLANA - CEMENT PASTES

Board of Scientific Supervision

Approved

Prof. Dr. S. A. Abo- El- Enein

Prof. of . Physical Chemistry and Building Materials, Faculty of Science,
Ain Shams University, Cairo, Egypt

S.A. Abot Lonen

Prof. Dr. H.El - Didamony

Prof. of Inorg. Chem. and Head of Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt.

M-Sl. Dideme

Prof. Dr. S. Hanafi

Prof. of Physical Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt S-Hanafi

Dr. A.M. Amin

Assoc. Prof, General Organization for Housing Building and Planning Research, Cairo, Egypt.

A. M. Stones

Prof . Dr . A. F.M.Fahmy

A. F. M. Fahmy Head of Chemistry Department

جامعة عين شمس

الكلية : كلية العلوم

صفحة العنوان

اسم الطالب: محمود أحمد طاهر

الدرجة العلمية: دكتوراه الفلسفة في العلوم

القسم التابع له: الكيمياء

اسم الكلية: كلية العلوم

اسم الجامعة : عين شمس

سنة التخرج: ١٩٧٣

سنة المنح: ١٩٩٤

TO THE MEMORY OF MY FATHER

TO MY MOTHER

TO MY WIFE

AND KIDS

ACKNOWLEDGEMENT

I wish to express my deepest gratitude to Prof.Dr. S.A. Abo-El-Enein, Professor of physical chemistry and building materials, Faculty of Science, Ain Shams University and Prof.Dr. H.El-Didamony, Professor of inorganic chemistry and Head of Chemistry Department, Zagazig University, for suggesting the subject of this thesis, their continual interest valuable guidance and great help in the interpretation of the results obtained in this investigation.

The author is also wishes to thanks Prof.Dr. S.Hanafi. Faculty of Science, Ain Shams University and Assoc.Prof. A.M.Amin, General Organization for Housing Building and Planning Research, Cairo, for their kind help, discussions and their numerous valuable guidance during the course of this work.

The author is also wishes to thanks Dr. Abd-El-Wahab Ba Beair. Dean of the Faculty of Education, and Dr. Ali El-Arishi, Vice Dean of the Faculty of Education, Abha Branch, King Saud University, Saudi Arabia, for their encouragement and all facilities, they offered.

The author also wishes to thanks Eng. Amer-El-Barkan.General Director of Southern Cement Co..Abha.Saudi Arabia.for his help, and cooperation.

CONTENTS

	Page
CHAPTER I:	
Introduction and Object of Investigation	
IA-Introduction	1
IB-Object of Investigation	34
CHAPTER II:	
Materials and Experimental Methods	
IIA-Materials and preparation of autoclaved specimens	36
A.1-Materials	36
A.1.1-Chemical composition	36
A.1.2-Mineralogical composition	38
A.2-Preparation of calcined clays	41
A.3-Preparation of autoclaved specimens	41
A.3.1-Autoclaved clay-lime specimens	42
A.3.2- Autoclaved clay-lime-silica fume specimens	44
A.3.3- Autoclaved clay-lime-blastfurnace slag	
specimens	45
IIB-Methods of Physico-chemical Measurements	47
B.1-Bulk density	47
B.2-Compressive strength	47
P 3 Vinotics of hydration	48

B.3.1-Determination of chemically-complined water	
contents	48
B.3.2-Determination of the free lime contents	49
B.4-Morphology and microstructure	50
CHAPTER III:	
Results and Discussion	
IIIA-Physico-chemical Properties of Artificial Pozzolan	as
made from Burnt Clays using Lime as Activator	51
IIIA.1-Hydrothermal Reactivity of Artificial Pozzolana	ıs
made from Burnt Mixed Type Clay using lime as	
an Activator	52
A.1.1-Effect of Mix Composition	52
A.1.1.a-Bulk density	52
A.1.1.b-Compressive strength	55
A.1.1.C-Hydration kinetics	59
A.1.1.C.(i)-Chemically-combined water contents	. 59
A.1.1.C.(ii)-Free lime contents	63
A.1.2-Effect of Firing Temperature	66
A.1.2.a-Bulk density	66
A.1.2.b-Compressive strength	69
A.1.2.C-Hydration kinetics	72
A.1.2.C.(i)-Chemically-combined water contents	72
A.1.2.C.(ii)-Free lime contents	75

A.1.2.d-Morphology and microstructure	15
IIIA.2-Hydrothermal Reactivity of Artificial Pozzolana	5
made from Burnt Montmorillonite Clay using Lime	
an Activator	76
A.2.1-Effect of Mix Composition	76
A.2.1.a-Bulk density	76
A.2.1.b-Compressive strength	80
A.2.1.C-Hydration kinetics	84
A.2.1.c.(i)-Chemically-combined water contents	84
A.2.1.c.(ii)-Free lime contents	88
A.2.2-Effect of Firing Temperature	90
A.2.2.a-Bulk density	90
A.2.2.b-Compressive strength	93
A.2.2.C-Hydration Kinetics	96
A.2.2.c.(i)-Chemically-combined water contents.	
A.2.2.c.(ii)-Free lime contents	100
A.2.2.d-Morphlogy and microstructure	101
IIIA.3-Hydrothermal Reactivity of Artificial Pozzolana	ıs
made from Burnt Kaolinite Clay using Lime as ar	ı
Activator	104
A.3.1-Effect of Mix Composition	104
A.3.1.a-Bulk density	104
A 3 1 h-Compressive strength	108

A.3.1.c-Hydration kinetics	112
A.3.1.c.(i)-Chemically-combined water contents .	. 113
A.3.1.c.(ii)-Free lime contents	116
A.3.2-Effect of Firing Temperature	117
A.3.2.a-Bulk density	117
A.3.2.b-Compressive strength	120
A.3.2.c-Hydration Kinetics	124
A.3.2.d-Morphology and microstructure	127
IIIB-Physico-chemical Properties of Some Autoclaved	
Pozzolana-Lime-Silica fume Pastes	129
B.1-Bulk density	130
B.2-Compressive strength	131
B.3-Hydration kinetics	133
B.3.1-Chemically-combined water contents	133
B.3.2-Free lime contents	135
B.4-Morphology and microstructure	136
IIIC-Physico-chemical Properties of some autoclaved	
Pozzolana-Lime-blastfurnace slag Pastes	138
C.1-Bulk density	139
C.2-Compressive strength	140
C.3-Hydration kinetics	142
C.3.1-Chemically-combined water contents	142
C.3.2-Free lime contents	144

C.4-Morphology and microstructure	145
CHARTER IV :	
Summary and Conclusions	146
References	155
Arabic summary	

CHAPTER (I)

INTRODUCTION AND OBJECT OF INVESTIGATION

CHAPTER (I)

I-INTRODUCTION AND OBJECT OF

INVESTIGATION

IA- Introduction:

Pozzolana are usually defined as materials which are not cementitious in themselves, but contain constituents which react with Ca²⁺ or Ca(OH)₂ and form new binding compounds in the presence of water. Pozzolanas can be divided to natural and artificial. The natural pozzolanas were mostly materials of volcanic origin and certain diatomaceous earths. Chemical or physical treatment for these natural materials such as clay, shales, fly-ash will produce artificial pozzolanas.

"Pozzolanic reactivity" is defined as index of reaction degree between pozzolanas and Ca²⁺ or Ca(OH)₂ in presence of water at ordinary temperature, or between pozzolanas and materials which produces Ca(OH)₂ under the precence of water. The pozzolanic reactivity is affected by the chemical composition, crystalline structure of constituents of pozzolana, and the conditions of hydration.

Massazza⁽¹⁾found that the crystalline hydrates formed in the reaction between lime and pozzolana in the presence of water where hexagonal calcium aluminate hydrate(C_AAH_v), Calcium

carboaluminate hydrate($C_3A.CaCO_3.H_{12}$), calcium aluminate monosulphate hydrate ($C_3A.CaSO_4.H_{12}$), and calcium silicoaluminate hydrate(C_2ASH_8) which were identified by XRD, DTA and electron diffraction analysis.

The hydration of $Ca(OH)_2$ and two kinds of trasses containing 50-70% of glass phase, feldspar, quartz, analcite, etc. in suspension and pastes was investigated by Ludwig and Schwiete⁽²⁾, they confirm the formation of C_4AH_{13} and C_3S hydrate without gypsum; in the presence of gypsum, ettringite and monosulphate hydrate was formed.

The reaction between silica and $Ca(OH)_2$ was investigated by Greenberg⁽³⁾, he concluded that the reaction could be divided to six elementary processes; that is, the adsorption of $Ca(OH)_2$ to silanol groups of silica surface, the dissolution of silica, the reaction of $H_4SiO_4+Ca(OH)_2+C-S-H$, the formation of nuclei, the growth of nuclei, and precipitation of crystals. He also emphasized that the dissolution of silica was the rate determining step of overall reaction. The rate of reaction was influenced by the surface area of silica and its free energy state, and not influenced by the concentration of $Ca(OH)_2$ above 3.6 mmol/L.

The reactivity of 6 pozzolans of different origin and composition and the microstructure of their hydrate were

studied by X-ray diffraction and SEM⁽⁴⁾. Two paste samples were studied, one containing 80%pozzolan+20%Ca(OH)₂ and the other Portland cement+20%pozzolan. The combination rate of Ca(OH)₂ in cement pastes was compared to the mechanical resistances of ISO mortars. According to mineralogical analysis, 4 of the pozzolans are of volcanic origin (feldspars, zeolitic, viterous), another of sedimentary siliceous origin, and the last is a powder plant fly ash. The activity of these additives is a function to their chemical composition, their mineralogical nature, and their specific surface. Certain pozzolans such as fly ash, which hydrate only slightly over short periods can be activated by thermal treatment.

Campbell, Weise and Love⁽⁵⁾, examined samples of volcanic ash from the Mount St. Helens eruption in May 1980 to evaluate: (1) possible effects on concrete by using sand and gravel aggregate containing the ash from fallout and (2) potential use of the ash as pozzolan. Ash added to aggregate improved the strength of mortar and decreased the alkali-aggregate reactivity in its natural condition. Grinding to a fineness about 5000 Blaine, however, suggested a possible use of the ash as pozzolan in concrete.

Furnier and Geoffray⁽⁶⁾, found that beside the structure, the morphology and the chemical composition, the fineness of ground material effected on the reactivity of pyroclasts. The