(Circle) on 12 ist

MOLEUCLAR DETECTION OF HEMOPHILIA A CARRIERS IN EGYPT

Thesis
Submitted For Partial Fulfillment of
M.D. Degree in Pediatrics

68907

Вy

Nadia Ahmed Ibrahim

Supervised By

Prof. Ahmed Samy Khalifa

Prof. of Pediatrics, Faculty of Medicine, Ain Shams University

Prof. Rabah Mohamed Shawky

Prof. of Pediatrics & Genetics and Head of Genetics Unit Faculty of Medicine, Ain Shams University

Prof. Mohsen Saleh El-Alfi

Prof. of Pediatrics
Faculty of Medicine, Ain Shams University

Dr. Azza S. El-Danasoury

Ass. Prof. of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr. Mahamoud M. Rifaat

Senior Scientist of Genetics Agricultural Genetic Engineering Research Institute

> Faculty of Medicine Ain Shams University 1998

10 My lovely son Mohamed

Acknowledgements

I would like to express my deepest gratitude to *Prof. Ahmed Sami Khalifa*. Prof of Pediatrics. Am Shams University, for his, honest supervision, scientific support, continous fatherly encouragement throughout the course of this thesis.

I am very grateful to *Prof. Rabah Mohamed Shawky*, Prof. of Pediatrics and Genetics & Head of Genetics Unit, Ain Shams University, for her constant advice, meticulous supervision unlimited support and great help

I also, wish to thank *Prof. Mohsen Saleh El-Alfi*, Prof. of Pediatrics. Ain Shams University for his kind help and great aid he offered me in this work.

I wish also to express my deep gratitude to *Dr. Azza Sadek El-Danasoury*. Ass. Prof. of Clinical Pathology, Ain Shams University, for her kind help and support and precious time she offered me through out this work

My sincere thanks are due to *Dr. Mahmoud Mohamed Rifaat*. Senior scientist of Genetics Agricultural Genetic Engineering Research Institute, for his help and assistance in doing the molecular biology study.

I am also grateful to *Mr. Eng. Essam Mohamed Omar* for his cooperation in word-processing this thesis giving it its final printed shap.

Finally, I would like to convey my warmest gratitude to all my patients and their families, my colleagues of the pediatrics Hematology / Oncology and Genetic Clinics, Ain Shams University for their thankful cooperation.

TABLE OF CONTENTS

List of abbreviations	
List of Figures	iv
List of Tables	
Introduction and aim of the work	1
Review of literature	3
Hemostasis	3
I Vascular phase of hemostasis	3
II Platelet phase of hemostasis	6
III Coagulation phase of hemosasis	12
IV Naturally protective mechanisms	17
Introduction to Hemophilias	
Hemophilia A	22
Incidence of hemophilia A	
Etiology and Pathogenesis	22
The inheritance pattern of hemophilia	
Hemophilia A in female	26
Clinical manifestations of hemophilia A	26
Laboratory assessment of hemophilia A	33
Management of hemophilia A	
Replacement therapy for FVIII	34
Ancillary therapy	36
Liver transplantation	37
Gene therapy	38
Complications of therapy	40
Infectious complications	
Factor VIII inhibitors	42
Molecular Biology of Factor VIII	46
Primary structure of factor VIII	
Synthesis	
Factor VIII function	51
Activation and inactivation	52
Assays for factor VIII coagulation activity	
Molecular Pathology of Hemophilia A	
Mutations in factor VIII gene	
Point mutations	
Deletions	
Insertions	
Inversions and rearrangements	

Carrier Detection in Hemophilia A	72
Importance of carrier detection	72
Types of carriers of hemophilia	75
Methods of carrier detection in hemophilia A	76
Use of pedigree data in carrier detection	
Use of laboratory data in carrier detection	
Use of molecular genetics in carrier detection	
Molecular biology techniques used in diagnosis of	
hemophilia A carriers	84
The Polymerase Chain Reaction	103
Structure of DNA	103
Procedure of PCR	
Subjects and Methods	
Results	130
Discussion	173
Conclusions and recommendations	183
Summery	185
References	188
Arabic summary	

LIST OF ABBREVIATIONS

5HT: 5 hydroxy tryptamine

A: Adenine

ADP: Adenosine diphosphate
AHF: Anti-hemophilic factor

AIDS: Acquired Immunodeficieny Syndrome

AMD: Amplified mismatch detection

APCC Activated prothrombin complex concentrates

APTT: Activated partial thromboplastin time

arg: Arginine

AT III: Antithrombin III

bp: Base pair

BTG: Beta-thromboglobulin (a platelet protein)

C: Cytosine Ca++: Calcium

cAMP Cyclic adenosine monophosphaka

cDNA: Complementary DNA = copy DNA

CMC Chemical mismatch clesvage

CP: Ceruloplasmin

CRM - Cross reacting material negative
CRM+: Cross reacting material positive

Da: Dalton

DDAVP 1-deamino 8-D arginine vasopressiné

DGGE Denaturing gradient gel electrophoresis

DNA: Deoxyribonucleic acid

dNTPs Deoxynucieoside triphosohates

EACA Epsilon aminocaproic acid

ED(TA: Ethylene di-amine tetra-acetic acid

EIA: Electroimmunoassay

ELISA: Enzyme linked immunosorbent assay

FDPs Fibrin degradation products

FIA: fluorescent immunoassay

FIX: Factor IX

FIXa: Activated factor IX

FV: Factor V

FVIII: C: Factor VIII coagulant activity
FVIII R Ag: Factor VIII related antien

FVIII/vWF Factor VIII/von Willebrand factor

FVIII: Factor VIII

16:01

FVIII:Ag: Factor VIII antigen

FVIIIa: Activated factor VIII

FX: factor X
FXa: Activated factor X

G: Guanine

G6PD: Glucose 6 phosphate dehydrogenase

GP: Glycoprotein

HBV: Hepatitis B virus
HCV: Hepatitis C virus

HIV: Human immunodeficieny virus

HMWK: High molecular weight kiningen

HVRs: Hypervariable regions

IRMA: Immunoradiometric assay

IU: Interntional Unit

Kb: Kilobase Kda: Kilodalton

Mg++: Magnesium ions

MRNA: Messenger RNA

NO: Nitric oxides

PCC Prothrombin complex concentrates

PCR Polymerase chain reaction

PF4: Platelet factor 4

PG A1: Prostaglandin A1

PGE2: Prostaglandin E2

PUBS Percutaneous umbilical blood sampling

RFLPs: Restriction fragment length polymorphisms

RIA: Radio-immunoassay

RNA: Ribonucleic acid

SSRs: simple sequence repeats

STR Short tandem repeat

STRPs Short tandem repeat polymorphisms

T: Thymine

TFPI: Tissue factor pathway inhibitor

tPA: Tissue plsminogen activator

TXA2 Thromboxane A2

U: Uracil

Vmax: Maximum velocity

VNTRs: Variable number of tandem repeats

vWF: von Willebrand factor

vWF:Ag: von Willebrand factor antigen WHO: World Health Organization

LIST OF TABLES

Table No	Page
Review:	
1- The coagulation factors	13
2- The inheritance pattern of hemophilia	24
3- Laboratory and clinical manifestations of hemophilia	29
4- Terminology of factor VIII and von Willebrand factor	47
5- Known mutations causing hemophilia A	64
6- Known deletions causing hemophilia A	68
7- Intragenic restriction polymorphism in FVIII gene	89
Results:	
1- Coagulation data of obligatory carrier group	132
2- Coagulation data of possible carrier group	133
3- Coagulation data of control group	134
4- Intragenic dinucleotide repeat polymorphism at intron 13	135
5- Frequencies of dinucleotide repeats in intron 13 of FVIII gene	136
among 24 normal X chromosomes (12 females)	
6- Frequencies of dinucleotide repeats in intron 13 of FVIII gene	136
among 25 independent mutant X chromosomes (25 males)	
7- Intragenic dinucleotide repeat polymorphism at intron 22	141
8- Frequencies of dinucleotide repeats in intron 22of FVIII gene	143
in 10 normal X chromosomes (5 females)	
9- Frequencies of dinucleotide repeats in intron 22 of FVIII gene	143
among 9 independent mutant X chromosomes (9 males)	
10- Cumulative informativeness of intragenic dinucleotide repeat	144
polymorphisms at factor VIII gene	
11- Concordance between coagulation studies (FVIII:C/vWF:Ag)	146
and molecular studies in obligatory carrier group	
12- Concordance between coagulation studies (FVIII:C/vWF:Ag)	147
and molecular studies in possible carrier group	

LIST OF FIGURES

Fig.No	Page No
Review:	
1- Thromboresistant properties of endothelium	5
2- Simplified diagram of platelet adhesion to collagen	7
3- Pathways of blood coagulation	16
4- The fibrinolytic system	20
5- The inheritance of hemophilia A and B	25
6- Structural domains of factor VIII	49
7- Structural domains of factor V, VIII and ceruloplasmin	51
8- Gene organization and processing of factor VIII	57
9- Line diagram of factor VIII gene	62
10- Mechanism of a common inversion in FVIII gene	71
11- DNA polymorphisms within the factor VIII gene	90
12-a Southern blot analysis	93
12-b Nucleic acid sequencing	95
12- Polymerase chain reaction	96
14-a Chorionic villus sampling	102
14-b Amniocentesis	103
14-c Fetal blood sampling	103
15- Structure, base pairing and polarity of DNA	104
16-a Primer extension reaction	108
16-b Polymerase chain reaction using primer pair	109
Results:	
1- Comparison between FVIII:C in the studied groups	135
2- Comparison between vWF:Ag in the studied groups	ነምፕ
3- Comparison between FVIII:C /vWF:Ag ratio in the studied	137
groups	
4- Pedigree of family A	150
5- Pedigree of family B	151
6- Pedigree of family D	152
7- Pedigree of family E	153
8- Pedigree of family F	154
9- Pedigree of family G	155
10- Pedigree of family I	156
11- Pedigree of family I	157

Fig.No	Page No
12- Pedigree of family J	158
13- Pedigree of family M	159
14- Pedigree of family N	160
15- Pedigree of family P	161
16- Pedigree of family R	162
17- Pedigree of family T	163
18- Pedigree of family U	164
19- Pedigree of family V	165
20- Pedigree of family W	166
21- Pedigree of family X	167
22- Pedigree of family Y	168
23- PCR picture of family	169
24- PCR picture of family	170
25- PCR picture of family	171
26- PCR picture of family	172