a onto

DIPYRIDAMOLE ECHOCARDIOGRAPHY VERSUS ^{99m}Te SESTAMIBI SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY IN DETECTION AND EVALUATION OF CORONARY ARTERY DISEASE

THESIS

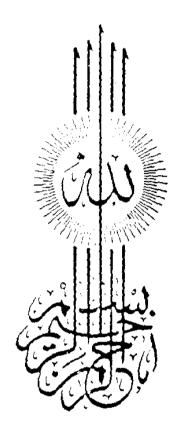
Submitted for partial fulfillment of M CARDIOLOGY

616.123

BY SAID YASSIN MORGAN M.B.,B.Ch., M.Sc. Cardiology

Supervisors

Dr. WAGDY GALAL Prof. of Cardiology Faculty of medicine Ain Shams University


Dr. MAIY HAMDY EL-SAYED Ass. Prof. of Cardiology Faculty of medicine Ain Shams University Dr. AHAMED NASSAR Prof. of Cardiology Faculty of medicine Ain Shams University

Dr. AHDY GHANEEMA Ph.D. Nuclear Medicine Instructor and Consultant State University of New York

Faculty of medicine Ain Shams University 1997

قَالْوَالْمُبِكُمَانَكَ لَاعِلْمِ لِنَا إِلَامَا فَالْمُ الْمُكَمِّمِ لَكَا إِلَامَا فَالْمُلْكِمِ لَمُ الْمُكَمِّمِ لَلْمُ الْمُكَمِّمِ لَلْمُ الْمُكْمِمِ لَلْمُ الْمُكْمِمِ لَلْمُ الْمُكْمِمِ لَلْمُ الْمُكْمِمِ لَلْمُ الْمُكْمِمِ لَلْمُ الْمُكْمِمِ لَالْمُ الْمُكْمِمِ لَلْمُ الْمُلْكِمِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِ لَلْمُلْكِمِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكُمِ لَلْمُلْكِمِ لَلْمُ لَلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لِلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لِلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لَلْمُلْكِمِ لِلْمُلْكِمِ لْمُلْكِمِ لِلْمُلْكِمِ لِلْمُلْكِمِ لِلْمُلْكِمِ لِلْمُلْكِمِ لِلْمُلْكِمِ لِلْمُلْلِمِ لِلْمُلْكِمِ لِلْمُلْكِمِ لِلْمُلْكِمِ لْمُلْلِكِمِ لِلْمُلْكِمِ لِلْمُلْكِمِ لِلْمُلْكِمِ لِلْمُلْكِمِ لِلْمُلْكِمِ لِلْمُلْكِمِ لِلْمُلْكِمِ لِلْمُلْكِمِ لِلْمُلْكِمِلْكِمِ لِلْمُلْلِلْكِمِ لِلْمُلْلِلْكِمِ لِلْلِلْلِلْكِمِلْلِلْكِمِلْكِمِلْكِمِ لِلْلْلِلْلِلْلِلْلِلْلِلْلِلْلِلْكِمِ لِلْلِلْلِ

ACKNOWLEDGMENTS

Before all, I should express my deep thanks to GOD without his great blessings I should never accomplish my work.

I am deeply obliged to professor Dr. Wagdy Galal, Professor of Cardiology, Ain Shams University, Who suggested the theme of this research work. Without his vast experience, knowledge, and continuos meticulous guidance, this work would not have been possible. I stand in great debt for all what he did.

I also feel deeply thankful to Prof. Dr. Ahamed Nassar, Professor of Cardiology, Ain Shams University, for his expert guidance, for his illuminating remarks, and for his sympathetic attitude. Without his help, this work would have never came to light.

I am also grateful to Prof. Dr. Maiy Hamdy El-Sayed, Ass. Professor of Cardiology, Ain Shams University. With her critical mind, brought out the final points of my research and opened new paths of thought which were formerly closed. Her contribution is without doubt, great.

I wish also to acknowledge Prof. Dr. Ahdy Ghaneema, Instructor and Consultant of nuclear cardiology, Advanced MRA Radiology Institute, Brooklyn, for his kind support. His effort in reviewing the scintigraphic part of this study was really a great help.

Lastly, but not the least, I would like to thank: Dr. Mohamed El-Gabaly, Fellow of Cardiology, National Heart Institute, Dr. Taher El-kady, Fellow of Cardiology, National Heart Institute, Dr. Khaled El-Saban, Lecturer of Nuclear Medicine, Cairo University, for their encouraging attitude, unlimited help and support throughout the work, Mr. Magdy, physicist of

nuclear rest.	department	of the	· National	Institute	for his	especial	

I dedicate this work to the memory of my beloved father the man who supported me science the day of my birth to the day of his death, let his soul lie in peace. Amen.

To my Mother, whose life and love continues to inspire me.

to Ghada, my petite woman, who makes all things possible.

JRES ABLES JCTION AND AIM OF THE WORK 1 . REVIEW OF LITERATURES 3 Jhapter I: Myocardial ischemia, general consideration Coronary Artery Distribution and Myocardial Supply 3 * Anatomic and Pathophysiologic Substrates of Myocardial Ischemia 5 * Manifestation of Myocardial Ischemia 10 ♥ Chapter II: Stress echocardiography 13 * Rational Basis of Stress Echocardiography 13 * Echocardiographic and Doppler Signs of Myocardial Ischemia 17 Quantitation of Regional Wall Motion 20 * Determinant of Regional Myocardial Dysfunction 25 * Grading of Ischemic Response During Stress Echocardiography 29 * Advantage and Disadvantage of Stress Echocardiography 31 * Prognostic Impact of Stress Echocardiography 33

♥ Chapter III: Pharmacologic stress imaging & Dipyridamole. 37

LIST OF CONTENTS

*	Pharmacological Stress Imaging In The Assessment Of Coronary Artery
	Disease 37
*	Dinyridamole: Mechanism Of Action, 38

* Dipyridaniole, Wechanishi Or Addon 30

48

* Dipyridamole: Efficacy With Imaging Techniques 46

Dipyridamole: Safety 46

ARABIC SUMMARY

* Dipyridamole: Safety 46	
♥Chapter IV: 99mTc SESTAMIBI SPECT	49
* Kinetics: Initial Distribution & Clearance 49	
* Radiopharmaceutical 51	
 Technical Aspects of Myocardial SPECT Imaging 	52
 Quantification of Myocardial Perfusion 59 	
 Clinical Application of ^{99m}Tc-sestaMIBI 64 	
Part 2: SUBJECTS AND METHODS	69
Part 3: RESULTS	91
Part 4: DISCUSSION	123
Part 5: SUMMARY AND CONCLUSION	143
Part 6: REFERENCES	149
MASTER TABLES	167
ABSTRACT	187

189

ABBREVIATIONS

- √: sequare root.
- ∑: sum.
- 0VD: no vessel disease
- 1 VD: one vessel disease.
- 2 VD: two vessels disease.
- ²⁰¹Ti: Thallium 201.
- 3 VD: three vessels disease.
- 4C: Apical 4 chamber view
- 99mTe: Technetium-99m.
- · ACC .: acceleration.
- ANT.: anterior
- AT: acceleration time.
- CAD: Coronary Artery Disease.
- CCU: coronary care unite
- D.M.: diabetes mellitus
- · D.W.: drug withdrawal
- DBP: diastolic blood pressure.
- · DECC .: deceleration.
- DET.: dipyridamole exercise test
- Dip.: dipyridamole
- · Dob.: dobutamine
- dp/dt: rate of increase of ventricular pressure
- DP: double product.
- DT: deceleration time.
- EF: ejection fraction.
- EJ.TIME: ejection time
- · ET: ejection time.
- F.H.: family history
- FN: false negative.
- FP: false positive
- FP: flow period.
- FVI: flow velocity integral.
- hr.: hour
- · HR: heart rate .
- INF.: inferior
- IV: intravenous
- IVRT: isovolemic relaxation time
- KeV: Kiloelectron unit
- L.M.: left main coronary artery.
- L.V.: left ventricle.
- LAD: left anterior descending coronary artery.
- LAT .: lateral
- LAX: parasternal long axis view

- LBBB: left bundle branch block
- LCX; left circumflex coronary artery.
- LM: left main coronary artery
- LVIDD: L.V.end-diastolic dimension.
- LVIDS; L.V. end-systolic dimension
- M.I.: myocardial infarction
- · mCi: millicuri
- MHz: megahertz
- MIBI: methoxy-isobutyl-isonitrile
- Min.: minute
- N.: number
- NPV: negative predictive value
- OM1: first obtuse marginal.
- OZ: ounce
- PAV: peak aortic velocity.
- PDA: posterior descending coronary artery.
- PET: Positron-Emission tomography
- · POST.: posterior
- PPV: positive predictive value
- PTCA: percutaneous transluminal coronary angioplasty
- Ptn.: patient
- R.V.: right ventricle
- RCA: right coronary artery.
- S1: first septal perforator branch.
- SAX PM: parasternal short axis view at the papillary muscle level
- SBP: systolic blood pressure.
- · SEC .: second
- Sens.: sensitivity
- SEPT.: septum
- Specif.: specificity
- SPECT: single photon emission tomography.
- TN: true negative.
- TP: true positive.
- UCL1: University of California-Losangeles
- VD: vessel disease
- VS.: vessel
- WMSI: wall motion score index.
- WPW: Wolf-Parkinson-White syndrome

LIST OF FIGURES

Fig. 1 Coronary Blood Flow Curve	6
Fig. 2 Classical Ischemic Cascade	16
Fig. 3 Diagram iffustrating the relationship between two dimensional	
echocardiographic views and coronary artery perfusion	23
Fig. 4 Pharmacologic interactions of dipyridamole and adenosine	40
Fig. 5 Schematic drawing of hydraulic model illustrating coronary horizontal steal	43
Fig. 6 Short axis view	56
Fig 7 Vertical long axis	56
Fig. 8 Horizontal long axis	57
Fig. 9 Polar map	57
Fig.10 Three dimensional hybrid sampling scheme	59
Fig.11 Schematic representation of the left ventricular wall segments	73
Fig.12 Relationship between two dimensional echocardiographic views and coronary a	rtery
perfusion	74
Fig.13 Same-day protocol for rest-stress DIP echocardiography & DIP sestamibi SPECT	76
Fig. 14 Short axis SPECT	79
Fig. 15 Vertical long axis SPECT	79
Fig. 16 Horizontal long axis SPECT	80
Fig.17 Suggestive vascular score according to the site of the lesion	89
Fig. 18 Distribution of patients according to number of vessels affected	93
Fig.19 Diagnostic value according to DIP echocardingraphy	98
Fig. 20 Percent change from baseline to peak DIP effect of peak acetic velocity, wall moti-	in score index
and flow relocity integral in patients with one and three vessels disease	100
Fig.21(A) Diagnostic value of DIP MIBI and identification of vessel affected	106
(B) Diagnostic value of DIP MIBL and the effect of No. Of vessels affected	106
Fig. 22 Comparison between SPECT and echocardiography in detection of specific	
vessel disease	115 & 137
Fig.23 Comparison between SPECT, echocardiography and combined techniques in	
detection of CAD.	116
Fig.24 Cumulative experience comparing stress echocardiography and stress SPECT	
scintigraphy.	136

LIST OF TABLES

Table 4 Available Types Of Stress Echneardiography	17
Table 2 Determinants of regional myocardial dysfunction	27
Table 3 The profile of activity of common pharmacological stressor	37
Table 4 Myocardial ischemia during Dipyridamole testing: A Heterogeneous Entity.	41
Table 5 Comparative characteristics of ²⁰¹ Ti and ²⁰⁰ Te	52
Table 6 Technical protocols Of Myocardial SPECT Imaging	55
Table 7 Suggestive vascular score	58
Table 8 Distribution of patients according to type of risk factors	91
Table 9 Distribution of patients according to number of risk factors	92
Table 10 Side effects of D1P infusion	92
Table 14 Classification of patients according to number of vs. Affected	93
Table 12 Classification of patients according to Lt. And Rt. system affection	94
Table 13 Classification of patients according to anterior and posterior system affection	94
Table 14 Classification of patients according to RCA lesions	95
Table 15 Classification of patients according to LCX lesions	95
Table 16 Classification of patients according to LAD lesions	96
Table 47 Classification of patients according to PDA dominance	96
Table 18 Overall diagnostic accuracy of DIP echocardiography	97
Table 19 Diagnostic accuracy (identification of vs. Affected) of DIP echocardiography	98
Table 20 Rest and stress aortic flow variables in patients with CAD	99
Table 21 Relation of aortic flow variables to number of vessel affected	100
Table 22 Rest and stress mitral flow variables in patients with CAD	101
Table 23 Overall diagnostic accuracy of DIP MIBI	105
Table 24 DIP MIBI (diagnostic accuracy and identification of vessel affected)	105
Table 25 Predictors of LCX lesions	107
Table 26 Predictors of RCA lesions	109
Table 27 Predictors of LAD Jesions	110
Table 28 Comparison between DIP MIBI and echocardiography in detection of	
specific vessel disease	114
Table 29 Effect of number of abnormal vessel present on the diagnostic	
accuracy of different techniques	116
Table 30 General agreement between DIP echocardiography and DIP MIBI SPECT	120
Table 31 (A-E) Wall-by-wall comparison between DIP echocardiography and	
DIP MIBI SPECT	121-12
Table 32. Collection of studies about stress, echocardiographic evaluation of CAD	127
Table 33 Collection of studies about DIP MIBI evaluation of CAD	131
Table 34 Comparison between the study of Parodi et al 1991 and the present study	132
Table 35 Collection of studies comparing stress echo-and stress perfusion scintigraphy	135